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What Is PEST?
1 Introduction

This chapter aims at FEFLOW users that may or may not have prior experi-
ence with PEST. Various references to the PEST documentation and other 
texts are provided within the text for further reading. 

The methods are described in their functional relation to the overall workflow 
and their relation to other methods. This initial orientation will help to under-
stand how PEST works, and should motivate the user on the way of becom-
ing proficient in uncertainty modeling.

The focus will be (with some exceptions) on those PEST methods that are 
actually supported by FePEST. It should be emphasized that PEST provides 
many more, exciting features, which will become available in future releases 
of FEFLOW. To use them already now, we encourage you to see the PEST 
manual for further information. 

1.1 What Is PEST?

PEST is a software widely used in environmental modeling to calibrate mod-
els, to determine uncertainty associated with parameters and predictions, and 
for related tasks. Today, PEST is probably the most commonly used software 
for the calibration of groundwater models.

However, PEST provides much more than calibration. Besides assisting the 
modeler in classical calibration tasks, it implements methods that address the 
fact that the outcome of a calibration is not unique, and that the prediction 
given by a calibrated model is only one out of many possibilities.

Instead of only providing one calibrated model, PEST aims to analyze the 
spectrum of possible solutions and consequently the uncertainty range asso-
ciated with parameters and predictions. Of course, these methods (for both 
traditional calibration and uncertainty analysis) must be learned and under-
stood before they can be successfully applied. Fortunately, good literature is 
available to do so. See the literature review (section 1.5) for more informa-
tion.

PEST is model-independent. Any modeling software that reads input and 
writes output from a file—or can be adapted to do so—can be linked to PEST. 
The effort to do this depends on the complexity of the file format.

On a more technical level, PEST can be seen as a toolbox of different pro-
grams to setup, run, and evaluate the results of a specific task (e.g. calibra-
tion). These programs are all started from the command-line prompt, and are 
configured using command-line parameters and/or configuration files without 
a graphical user interface. FePEST has been developed to provide more con-
venient access to PEST functionality when using FEFLOW models—without 
limiting it. 
1



Introduction
1.2 Where to Get PEST?

PEST is free software. It is developed by John Doherty (Watermark Numeri-
cal Computing) and can be downloaded, including all documentation, from 
www.pesthomepage.org.

Please also see the FePEST installation instructions for further information.

1.3 What Is FePEST?

FePEST links PEST with a FEFLOW model through a convenient graphical 
user interface.

With FePEST it is possible to use a range of PEST functionality without the 
need to learn the syntax of its various command line tools and configuration 
files, and to manually adapt FEFLOW’s model files for usage in PEST. Visual 
feedback on the optimization progress is provided during and after the model 
run. This will give the user major savings of time both in terms of learning and 
productive work.

The range of supported PEST features in this release of FePEST includes:

 Model calibration (including Regularization and pilot point parametriza-
tion)

 Subspace methods
 Parallelization (locally and/or using remote servers, incl. file transfer)
 Linear sensitivity analysis
 Predictive analysis (worst-/best case evaluation)

1.4 Where to Start...

1.4.1 If You Are New to PEST

Most PEST features required for model calibration using PEST are accessi-
ble through FePEST. The user is in many cases not required to make 
changes to the PEST files and therefore does not need to learn the syntax of 
the files and commands of PEST.

However: It is still essential that the methods of PEST are understood to be 
able to interpret the results of a PEST run correctly! It is suggested that the 
time saved on understanding PEST's file structure and command line tools is 
invested in understanding these methods.
2 FEFLOW - © DHI



Related Literature
1.4.2 If You Are an Experienced PEST User

PEST provides more functionality than FePEST can cover. We have chosen 
to implement those work flows that will be most relevant for most users (and 
more will be implemented in the future). 

This does not pose a limitation to use FePEST for other methods at all. In 
fact, it is developed in an "open" way thus that the benefit of a rapid PEST file 
setup can be used even for unsupported methods. The following aspects will 
support experienced users to customize their setups:

 The user interface cites the original names of PEST variables and tools. 
Experienced users will therefore quickly recognise how the user interface 
relates to the respective PEST functionality.

 The file setup created by FePEST strictly follows the syntax specified in 
the PEST documentation and is fully accessible. The structure of these 
files - including several batch-files - are designed to allow adaptations for 
different purposes.

 Especially if the optimization involves the pilot-point method, experi-
enced users will use FePEST for the otherwise elaborate fundamental 
work steps like the definition of observations and parameters, and then 
adapt the resulting PEST setup for the particular purpose.

 Users familiar with the FEFLOW IFM programming interface can use a 
respective feature in FePEST to allow IFM plug-ins to communicate with 
PEST directly. This extends the scope of FePEST beyond the predefined 
observation and parameter types.

1.5 Related Literature

 The following list of literature should help users new to PEST to find a 
reasonably easy access to the science behind its tools. Initially, PEST 
might be sought as a tool to accelerate model calibration. PEST has a 
very high potential to accomplish this task if the underlying concepts are 
sufficiently understood. Later, more advanced methods might be applied 
to understand the uncertainties associated with calibrated models and 
predictions made by them.

 The document Use of PEST and Some of its Utilities in Model Cali-
bration and Predictive Error Variance Analysis: A Roadmap provides 
a first overview.

 For a more in-depth understanding, the PEST tutorial Methodologies 
and Software for PEST-Based Model Predictive Uncertainty Analy-
sis is recommended. It provides a comprehensive introduction to basic 
and advanced methods, and conveys important knowledge of the con-
cepts behind them.

 The PEST Users Manual and the Addendum to the PEST manual are 
the primary and most complete reference to all PEST features and tools. 
This manual will refer to these documents regularly for further reading.
3
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 Another useful document Getting the Most out of PEST describes 
some general settings and procedures that avoids a major part of typical 
problems. FePEST uses a major part of these recommendations by 
default.

See www.pesthomepage.org for additional documentation on PEST.

1.6 Overall Workflow

The structure of this document follows the work flows to perform the sup-
ported tasks in FePEST. 

After a brief introduction to some of PESTs methods and algorithms (Section 
2), the following tasks are explained: 

 Fundamental Problem Setup (Section 3)
The fundamental problem setup prepares the model to be processed by 
PEST. These configurations form the basis for all basic and advanced 
PEST methods. It includes the definition of adjustable parameters, 
observation and prior knowledge, the choice for subspace regularization 
methods and the setup of remote servers for parallel computing.

 Parameter Estimation/History Matching/Calibration (Section 4)
The history matching process targets the estimation of a parameter set 
that satisfies both the historical observations and the prior knowledge. 
After doing the required settings and starting PEST, the feedback of 
PEST is reviewed and the resulting model is opened in FEFLOW.

 Predictive Analysis (Section 5)
For most environmental models it is possible to find more than one cali-
brated model, with predictions varying at different levels. Finding maxi-
mum or minimum possible key predictions among these models is a 
simplistic approach to identify worst-case or best-case scenarios of well-
posed problems that are compatible with the calibration data set. 

 Sensitivity Analysis (Section 8.1)
FePEST allows to export the sensitivities of the parameters. These can 
be used to create sensitivity maps in FEFLOW, or be processed with 
other software or PEST tools.

 Customized PEST Setups (Section 9)
Experienced PEST users may want to use PEST methods that go 
beyond the functionality of FePEST.
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2 Methods and Concepts

The fundamental methods applied by PEST during the calibration process 
are briefly described in the following. As already mentioned in Section 1, this 
description allows the reader to quickly understand their respective role in the 
overall workflow. The PEST documentation, to which specific references are 
provided, describes the methods in full detail.

2.1 GLMA Search Algorithm

The central feature of the PEST engine is the GLMA search algorithm, that 
iteratively optimizes the model parameters to improve its fit to observed data 
and other objectives.

The fit to the observations is hereby expressed through the Measurement 
Objective Function. In the simplest case, this will be the weighted sum of 
squares of the residuals between measurement and simulation results:

(2.1)

where (hobs denotes an observation (typically from a field measurement), hsim 
its related simulation result, and w the weight that has been applied to the 
measurement (observation weights will be discussed in Section 2.1.2).

The equation shown is also the formulation FePEST uses to defines the 
measurement objective function. The observations hi are loaded from the 
FEFLOW model and the weights wi can be changed by the user within the 
user interface (Figure 2.1)

 wi hi
obs hi

sim– 
2

i
=
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.

Figure 2.1 The objective function is defined through the observation definition in 
FePEST.

The search algorithm used in PEST is the Gauss-Levenberg-Marquardt 
algorithm (GLMA). The GLMA changes the model parameters until a mini-
mum objective function value is found. Running PEST, the user will observe 
two working steps per iteration:

 Derivative calculation: The parameters are changed incrementally. By 
repeating the model run for each parameter, and observing the resulting 
changes of observation values, the partial derivative for each pair of 
parameter and observation can be calculated by finite-difference approx-
imation. These derivatives form the elements of the Jacobian matrix. 
The numerical effort to calculate the Jacobian matrix usually dominates 
the iteration.

 The parameter values are adjusted aiming to reduce the objective func-
tion. The direction and magnitude of the adjustment is expressed by the 
parameter upgrade vector. To identify the optimal direction of this vec-
tor, the GLMA uses a combination of two strategies:

 While the objective function shows a predominantly linear behavior, the 
method of gradient descent is applied. This method determines the 
parameter upgrade vector from the direction of steepest descent of the 
objective function. This can often be observed during the initial phase of 
the optimization.

 Objective-function nonlinearity is addressed via the Gauss-Newton 
method. This method computes a parameter upgrade vector based on 
the presumption of a quadratic behavior of the objective function.

The two methods are not mutually exclusive: The GLM algorithm interpolates 
between them, controlled by a scaling parameter (the Marquardt-Lambda).

PEST dynamically updates lambda depending on the progress in reducing 
the objective function. The current lambda as displayed by FePEST during 
the PEST run is a good indicator for the current nonlinearity of the objective 
function.

 high lambda values (e.g., > 10) indicate linear behavior (and predomi-
nant use of the gradient descent method).

 small lambda values (e.g., < 2) indicate nonlinear behavior (and predom-
inant use of the Gauss-Newton method).
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Figure 2.2 and Figure  illustrate the development of the objective function and 
the Marquardt lambda during a typical PEST optimization. Gradient descent 
is used in the first iterations, indicated by higher lambda values. When the 
objective function approaches its (local) minimum, Lambda falls to near zero 
indicating almost exclusive use of the Gauss-Newton method

.

Figure 2.2 Development of the objective function and the Marquardt lambda during 
a PEST run.

.

Figure 2.3 Schematic illustration of contours of the objective function and the path 
of the parameter upgrades vectors, after Doherty

If successful, the GLMA will find a parameter set that constitutes a local min-
imum of the defined objective function. This is an important restriction 
because multiple local minima might be present, and it is not guaranteed that 
the one found is also the global minimum.

It is therefore possible that different PEST runs result in different parameter 
sets if the iteration starts at different initial parameter values. These should 
therefore be chosen as close as possible to those values that are expected.
9
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The modeler should also critically review the resulting parameter set and the 
model-to-measurement-misfit (see Figure 2.4). Strong, but also very low (see 
section Section 2.4) departures indicate potential problems with the optimiza-
tion.

Further reading: PEST Manual (5th Ed.), Ch. 2.1: The Mathematics of PEST.

Figure 2.4 Scatter plot of simulated vs. observed data before (top) and after (bot-
tom) optimization.

2.1.1 Derivative Calculation0

The calculation of derivatives is a fundamental element of the GLM algorithm.

The derivatives are calculated through numerical differentiation. Each param-
eter is incrementally changed, and the model is run each time to calculate 
and record the resulting change of the model observations. The derivative of 
each parameter â observation relationship is then calculated through finite-
difference techniques.

Correct calculation of derivatives is of critical importance to the optimization, 
as failure to it will lead to an unstable optimization procedure and PEST will 
not be able to lower the objective function.

Model instabilities are a frequent cause of PEST failures!

Model instabilities are a frequent cause of PEST optimization failure!
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Figure 2.5 Calculation of derivatives during stable (left) and unstable (right) model 
behavior. If the model is unstable, random noise dominates the physical 
change of the observation value. PEST tries to compensate with higher-
order finite-difference methods.

Instabilities introduce noise to the observation, which is random and not 
related to the physical-based simulation result. Figure  illustrates this effect. If 
this noise - and not the incremental parameter change - dominates the obser-
vation response, the direction of the upgrade vector becomes random itself 
and the optimization will fail.

Even though certain countermeasures are available (see Section 3.2.3), the 
modeler should always aim at maintaining maximum stability of the FEFLOW 
model. With JACTEST (Section 8.2) PEST provides a tool to check the integ-
rity of the derivatives calculation for specified parameters.

Further reading: PEST Manual (5th Ed.), Ch. 2.3: The Calculation of Deriva-
tives.

2.1.2 Observation Weights

The weight of an observation controls how strong its residual (the deviation 
between computed and measured result) contributes to the measurement 
objective function. A reasonable choice of weights can positively influence 
the convergence behavior and result of the GLM algorithm.

Different weighting strategies can be applied (alone or in combination), some 
examples are given in the following.

Weighting by Measurement Noise

A common strategy of adjusting observation weights is applying the inverse 
of its expected measurement noise as a weight factor. The contribution of 
less trustworthy observation values to the measurement objective function is 
reduced, limiting the risk of inaccurate measurements having a negative 
impact on the optimization and leading to the estimation of parameter values 
which are thereby in error.
11
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Weighting by Absolute Measurement Value

The absolute values of observations in a PEST optimization can encompass 
several orders of magnitudes, especially (but not limited to) if observations of 
different types are involved (e.g., Hydraulic head [m] and Mass-concentra-
tions [mg/l]).

Observations with small values are therefore under-represented in the meas-
urement objective function. Normalizing the values by assigning a weight 
equal to the inverse of the absolute compensates for this effect and makes 
sure that the information contained in these values finds appropriate rep-
resentation in the optimization.

Equalizing Observation-Group Contributions

Observations of different types are assigned to different observation groups. 
One may also decide to manually assign observations of the same type to dif-
ferent observation groups. Using a spreadsheet or the PEST tool PWTADJ1 
observation weights can be adjusted to equalize the total contribution of each 
observation group to the total objective function at the start of the optimization 
process. This helps to ensure that the information that is contained in each of 
these observation groups is used in estimation of model parameters, and not 
undervalues or overvalued because of too low or too high a contribution to 
the initial objective function.

De-clustering

Observations can be correlated. Water level measurements at observation 
wells close to each other are often not independent. It is likely that values and 
changes at these wells are similar, and the worth of information contributed 
by one well is diminished because it was already contributed by a different 
well in its vicinity. The worth of the information provided by each of the wells is 
therefore lower than a separate measurement at a larger distance. In this 
case, the weight of correlated observations should be reduced.

Time series are good examples of this principle as well. Daily measurements 
of the groundwater level might carry the same worth of information as a 
measurement taken on a monthly basis does. Because the daily measure-
ment has more measurement points, it would be over-represented if the 
weights of each of these measurement points are not compensated for. This 
makes it advisable to normalize the weights of observations of time series by 
the sampling rate of the measurement.

Further reading: PEST Manual (5th Ed.), Ch. 2.1.2: Observation Weights.

2.2 Pilot-Point Method

The pilot-point method defines parameters as a spatially variable distribution.
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In the classical calibration approach, it is a common assumption that geologic 
formations have spatially constant parameter values. In reality, this is rarely 
true.

Therefore, instead of applying a homogeneous parameter value across a 
zone, varying values for the parameter are assigned at particular locations 
(the pilot points). Each pilot point represents an adjustable parameter in 
PEST. An interpolation method then creates a continuous distribution of this 
parameter. Figure 2.6 illustrates the method.

The resulting large number of parameters adds to the degrees of freedom in 
the inversion process. This will generally lead to a better fit to the measure-
ment data. At the same time, it will increase the level of nonuniqueness and 
therefore better reproduce the uncertainty associated with the model predic-
tions.

Figure 2.6 Distribution of hydraulic transmissivity, interpolated from a set of 15 pilot 
points.

Pilot points often lead to lower objective functions and better fits to measured 
data. However, the modeler should be aware of the risk of over-fitting the 
parameter field and should always check that the solution is plausible in a 
geological sense, and regularize it if necessary (see Section 2.4.2).

Further reading: PEST Groundwater Data Utilities, Part A, ch. 5: Model 
Parameterization based on pilot-points.
13
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2.3 Parameter Non-uniqueness

A typical challenge when history-matching (calibrating) an environmental 
model is the inherent non-uniqueness associated to the inverse solution. 
Usually many different parameter sets exist which are all compatible with the 
historical observation data.

Observation data is usually sparse and usually not sufficient to uniquely iden-
tify more than just a few of the large number of model parameters that can be 
made adjustable.

This has two consequences:

 Different calibrated parameter sets lead to different predictions. This 
makes it difficult to use a single model alone for decision-making.

 Some or many of the parameters will be insensitive to observations. The 
GLMA-based optimization process can become unstable under this con-
dition, leading to long optimization run-times or even failure to optimize.

Regularization techniques can provide a defence against these issues. 
They restrict the parameter search to identifiable parameters, either by add-
ing additional constraints to the parameters (Structural Regularization, Tik-
honov Regularization) or separating identifiable parameters from non-
identifiable parameters (Subspace Regularization).

This manual restricts itself to Tikhonov regularization (discussed in Section 
2.4.2) and Subspace regularization (discussed in Section 2.5).

See the PEST tutorial Methodologies and Software for PEST-Based Model 
Predictive Uncertainty Analysis, pp. 46 (see the literature review, Section 
1.5), for a very good discussion on different regularization techniques.

2.4 Prior Knowledge

Prior knowledge is introduced in the optimization if some knowledge about 
the estimated range of parameters values exists. (This is also referred to as 
pre-calibration parameter probability.)

The general procedure can be explained in comparison to the history match-
ing process: In history matching, the departure of computed observations 
from their measured values is expressed as a function (the measurement 
objective function). Minimizing this function leads to a parameter set that 
reproduces the historical measurements, hence a calibrated model is found.

When using prior knowledge, the departure of the applied parameter values 
from parameter values preferred by the modeler is expressed as a second 
function (the regularization objective function). This kind of regularization 
is therefore a method that introduces knowledge about the plausibility of 
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parameter values into the calibration process. This knowledge is often sub-
jective, but nevertheless valuable.

PEST implements two principal methods to perform a concurrent optimization 
on measurement and regularization objective function: Prior Information and 
Tikhonov Regularization.

2.4.1 Prior Information

Prior information is the simplest way to implement preference for parameter 
values or to preferred relationships between them (e.g., a preferred ratio 
between horizontal and vertical hydraulic conductivity). The sum of squares 
of departures from these equations contribute to the regularization objective 
function.

Minimization of the total of regularization and measurement objective function 
leads to a parameter set that reproduces the historical measurements and 
shows a plausible parameter distribution at the same time.

Further reading: PEST Groundwater Data Utilities (5th Ed.), ch. 2.1.3: The 
Use of Prior Information in the Parameter Estimation Process.

2.4.2 Tikhonov Regularization

The Tikhonov regularization method as implemented in PEST automatically 
generates a number of “information" equations, which defines the initial value 
of each parameter as the preferred value (see Figure 2.7). The user can also 
make changes to these equations, or set up his/her own additional equations.

Figure 2.7 Regularization of parameters: departures (red) from preferred parame-
ter values (green) are penalized.

When using Tikhonov regularization the calibration process is formulated as a 
constrained minimization process as follows “minimize the regularization 
objective function while ensuring that the measurement objective function is 
set at the user-specified target”.Figure 2.8 illustrates this approach. If this 
15
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user-specified target is not met, then PEST minimizes the measurement 
objective function. In the meantime it adjusts weights applied to prior informa-
tion such that they act as Lagrange multipliers in the constrained optimization 
process. PEST thus determines the appropriate relative weighting between 
measurements and respect for prior information in accordance with a user’s 
choice of target measurement objective function.

As a result, Tikhonov-Regularization reduces the number of possible parame-
ter sets that constitute a calibrated model by rejecting calibrated models with 
unrealistic parameter values.

Figure 2.8 Constraint optimization: the regularization objective function (green 
contours) is minimized while staying within the defined limits (red con-
tour) of the measurement objective function.

Further reading: Methodologies and Software for PEST-Based Model Predic-
tive Uncertainty Analysis: Regularization (p. 46).

2.4.3 Regularization of Pilot-Point Parameters

If parameter fields are defined as a varying distribution using the pilot point 
method, this will allow a better fit to the observation data during history 
matching compared to a result obtained using constant parameters. While 
this is favorable to some extent, the resulting parameter field might look 
implausible, especially when pilot points are placed at a high density.

Figure 2.9 provides an example. Because there are more pilot points (104, 
purple crosses) than observations (12, flags), a perfect match between 
observed and simulated results is obtained.
16 FEFLOW - © DHI



Prior Knowledge
 

Figure 2.9 An over-fitted parameter field.

The transmissivity field however reveals that this result is flawed nonetheless: 
The distribution looks somewhat "bumpy", especially around the observa-
tions. Even more severe, the transmissivity above the northernmost row of 
observation points is totally different (lower) from the one in the remaining 
area.

A parameter distribution like this is unlikely, and accordingly a prediction 
made with this model has a high potential of wrongness even though it is per-
fectly aligned with its calibration data. This state is called overfitting.

To prevent overfitting, a second objective (next to the measurement objective 
function) is required, through that plausibility is preferred.

A common approach is to prefer homogeneous distributions of parameters 
over heterogeneous distributions. If different values are assigned to neighbor-
ing pilot points to lower the measurement objective function, this difference 
will be penalized and will give rise to the regularization objective function 
(See figure Figure 2.10). As a consequence, the optimization will yield a bal-
anced compromise between calibration fit and homogeneity Finding the right 
distance within these penalties are applied is important. Differences between 
closely located points needs to be penalized stronger as the likeliness of 
parameter differences becomes smaller. Pilot points located far apart (above 
a certain distance, the correlation length) do not need to be penalized at all.

 This distance and the strength of correlation are defined through a variogram 
(Figure 2.11)
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Figure 2.10 Regularization of pilot point parameters: by penalizing differences 
between pilot points (red), a homogeneous (smooth) distribution is pre-
ferred. Initial parameter values are still preferred through prior informa-
tion (grey).

Thus, within the range of correlation, implausible heterogeneities are sup-
pressed unless they are necessary to meet the targeted value of the objective 
function. PEST calculates the expected correlation between each two pilot 
points and creates a covariance matrix which is used to impose the correct 
weights. In summary, the correlation length allows to define a preferred varia-
bility of a model property, in addition to the preferred mean value that is pro-
vided through the initial parameter value.

Figure 2.12 shows the same model, regularized with a correlation length of 
200 m. The transmissivity field is smoother, but still reflects general trends 
suggested by the observation data. Even though it yields a stronger model-to-
measurement misfit, predictions made using this model will have higher con-
fidence.

Further reading: PEST Groundwater Data Utilities, ch. 5.6: Regularization (of 
pilot points).

Figure 2.11 A spherical-type variogram with a correlation length (Range) of 200 m.
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Figure 2.12 Regularization of pilot points parameters leads to a smoother parameter 
field (compare with Figure 2.9)

2.5 Subspace Regularization

Subspace regularization follows a different approach than Tikhonov regulari-
zation.

The fundamental idea of subspace regularization is to separate identifiable 
parameter components from non-identifiable parameter components in order 
to exclude the latter one from the parameter search.

The identifiability of a parameter is related to the way and extent it influences 
existing observation data (if a parameter does not influence any of the exist-
ing observations, it cannot be identified).

Parameters (called base parameters in the following) are usually neither 
completely identifiable or non-identifiable. It is however possible to create lin-
ear combinations of base parameters for which this is the case. These are 
called super parameters.

The transformed (super-)parameter space is separated into two subspaces: 
One subspace is comprised of combinations of parameters that have an influ-
ence on observations. These combinations of parameters can be uniquely 
estimated through the history matching process.

The remaining parameter combinations occupy the so-called null subspace. 
These combinations of parameters have no or very small influence on model 
outputs corresponding to observations; hence estimation of these parameters 
through history matching is not possible.
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The groups are also denoted as sub-spaces of the parameter space (the 
parameter space is the combination of these two orthogonal subspaces, and 
contains all parameters):

 The group of identifiable parameters is called solution subspace (or often 
just solution space)

 The group of non-identifiable parameters is called null subspace (or often 
just null space)

2.5.1 Truncated Singular Value Decomposition

Singular Value Decomposition (SVD) is the name of the method through 
which the parameter space is partitioned into the two orthogonal solution and 
null subspaces.

In most groundwater modeling contexts the solution space is smaller than the 
null space. The earth is complex, and the information content of most calibra-
tion data sets is insufficient to provide unique estimation of the parameters 
which describe this complexity.

SVD analyzes the Eigenvectors of the covariance matrix to identify the 
super parameters. The Eigenvalues - a measure for the post-calibration var-
iability of their associated Eigenvectors - are the criterion to decide if a 
parameter is associated with the solution space and therefore included in the 
optimization or not. The ratio of highest to lowest eigenvalue is a measure of 
the extent to which the inverse problem approaches ill-posedness. If this ratio 
is more than about 5e-7 then the problem can be considered to be ill-posed 
(in which case PEST would fail to optimize).

The truncated SVD separates the parameter space into solution and null 
subspace using this ratio as a criterion, and therefore omits any super param-
eters that are to insensitive to be uniquely estimated. As a consequence, the 
inversion of the solution space is always well-posed and a stable optimization 
is guaranteed (unless flawed by other sources of error, e.g. bad derivative 
calculation, Section 2.1.1).

FePEST applies truncated SVD with a threshold of 5e-7 by default in any 
PEST setup.

Further reading: PEST Manual (5th Ed.), Ch. 8.4: Truncated Singular Value 
Decomposition.

2.5.2 SVD-Assist

The SVD-A method uses the concept of the SVD to reformulate the inversion 
problem in a way that it can be solved with much less numerical effort.

The SVD first identifies those combinations of parameters which are uniquely 
estimable on the basis of the current calibration data set and defines them as 
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super parameters. SVD-A creates and run a new PEST setup based on 
super parameters instead of base parameters.

When calculating finite-difference derivatives of model outputs with respect to 
parameters, it actually calculates these derivatives with respect to the super 
parameters rather than the native model parameters (base parameters). 
Hence only as many model runs are required per iteration as there are 
dimensions in the solution space (i.e. number of super parameters).

This method is of fundamental importance for the pilot point method, as it 
allows calibration and predictive error analysis of highly parametrized models 
(e.g., using 1000+ parameters) with reasonable effort.

Further reading: PEST Manual (5th Ed.), Ch. 8.5 SVD-Assist

2.5.3 Least Squares (LSQR)

Least Squares (LSQR) is an alternative to the SVD method for highly-para-
metrized inversion problems. Experience has shown that its application is 
useful when more than 2500 parameters are involved.

Further reading: C. C. Paige and M. A. Saunders, LSQR: An algorithm for 
sparse linear equations and sparse least squares, TOMS 8(1), 43-71 (1982). 
and C. C. Paige and M. A. Saunders, Algorithm 583; LSQR: Sparse linear 
equations and least-squares problems, TOMS 8(2), 195-209 (1982).

2.6 Calibrated-Constrained Monte Carlo Analysis

Monte Carlo analysis can be undertaken by FePEST to understand the 
uncertainty of a specific prediction or a set of prediction. From a groundwater 
modeller perspective, for example a prediction can be set of hydraulic heads 
in the model, inflows to a open-cast mine, concentration peak at certain 
model areas, geothermal storage in the underground, etc.

The clear advantage of Monte Carlo analysis from a decision-maker point of 
view is the fact that we can learn the uncertainty of any prediction. Contrarily 
to other methods presented here (i.e. Predictive Analysis PEST mode), 
where uncertainty is only provided by one prediction at a time.

Predictive uncertainty analysis is accomplished by making predictions of 
interest with all parameter fields, and by then undertaking stochastic analysis 
of these predictions (PEST Manual). The outcomes of this analysis include 
probability distributions (histograms) of individual predictions and/or group of 
predictions. From here we can learn about mean and variance of our predic-
tions.

A definition of calibration-constrained Monte Carlo analysis stands for identi-
fying multiple (i.e. several) model scenarios, which all of them maintains valid 
the assumption of calibration, i.e. minimum reduction of the measurement 
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objective function. All these several model scenarios starts from a stochastic 
process (Monte Carlo) and after subsequent “adaptations”, they provide both 
an acceptable fit to the historical observations and reasonable parameter dis-
tributions (i.e. regularized field).

The generation of parameter fields which respect calibration constraints is 
undertaken by combining the SVD-Assist as a mathematical regularization in 
PEST and the pre-calibration null-space projection of differences between 
stochastic parameter fields and the “calibrated” model.

2.6.1 Stochastic Parameter Generation

The start point of the analysis requires a model, which is considered to be 
“calibrated”. Such a stage can be achieved by running FePEST in the stand-
ard operation mode (Estimation) with any combination of regularization 
approaches and prior information.

Based on a Monte Carlo method, random parameters are generated with a 
mean value equal to the calibrated parameters. The prior information covari-
ance matrix (Regularization -> Tikhonov section in the Problem Settings) and 
using a mean equal to the calibrated parameter field.

2.6.2 Null-Space Projection

The null-space projection is overtaken by the PEST Utility PNULPAR. The 
starting point of the null-space projection is a set of randomly-generated 
parameters (e.g. using PEST Utility RANPAR, see section 6.3) and knowl-
edge of the dimensionality of the problem. 

Typically, the value of the calibrated parameters is considered as the mean 
value for the stochastic generation of the parameters. The number of dimen-
sions of the calibrated solution space is approximately equal to the number of 
super parameters used by the SVD-Assisted calibration.

During the operation of PNULPAR three task are carried out:

 Calculate the different between each parameter set and the calibrated 
parameters.

 This difference is subsequently projected onto the calibration null space
 The projected differenced is re-added to the calibrated parameter set.

The random parameter sets modified as described above do not strictly 
reflect a perfect calibrated model, because non-linearities in the problem. 
Therefore, adjustment of these parameters is required to validate the calibra-
tion constraints. Such modifications take place through the alternations made 
to the calibration solution space (with an untouched null space).
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Figure 2.13 Parameter set (Conductivity) without null-space projection (left) and 
with null-space projection (right).

Figure 2.13 shows an example of randomly-generated parameters without 
(RANDPAR utility) and with (PNULPAR utility) projection onto the null space.

2.6.3 Readjustment of Parameters

In the previous steps, a set of “almost calibrated” parameters were gener-
ated. In order to fully complete the calibration task for each parameter sam-
ple, a series of calibration runs with PEST is undertaken. The SVD-Assist 
regularization in PEST is used here to adjust the parameters rapidly. This 
methodology will only run the model as many times as the number of super 
parameters (or dimensionality of the problem). Typically, after two iteration 
cycles of the PEST optimization, the calibration stage is achieved.

2.6.4 Outcome of Calibration-Constrained Monte Carlo

The final outcome of the calibration-constrained Monte Carlo provides a set 
model parameters, which all of them calibrate the model similarly. In addition 
we have tracked the evolution of a prediction (or several ones) and the evolu-
tion of the objective function for all these models. These last two can be used 
to create histograms to understand explore the uncertainty of the modelling 
task.
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FEFLOW and FePEST
3 Fundamental Setup

The fundamental setup prepares the model to be processed by PEST. Its 
steps are common to most PEST methods.

The fundamental setup comprises the definition of parameters, observations 
and prior knowledge (if available). A decision on using subspace methods is 
to be made, and finally, parallel computing may be configured to distribute 
workload on different computers.

3.1 FEFLOW and FePEST

FePEST requires a FEFLOW model as a starting point for any PEST setup. 
FePEST asks for the file name of the FEFLOW model when a new optimiza-
tion project is created.

When setting up a FEFLOW model that is planned to be subject to a PEST 
optimization, bear in mind that the run-times should be reasonably short and 
that the model must run stable. It is possible to exchange the FEFLOW model 
by another one, provided that the new model file contains the same observa-
tion points and parameter zone selections (usually a modified version of the 
original model).

It is also possible to open a model simultaneously in FEFLOW and FePEST. 
If changes are made and the model is saved within FEFLOW, a reload must 
be performed within FePEST to inform it about the changes made.

Always perform a reload in FePEST after saving the FEM file in FEFLOW.

Figure 3.1 The Edit menu allows access to the problem settings dialog (Control 
option) and allows to open, reload and change the FEM file.

The Edit menu allows to save a FEM file in order to visualize all the parame-
ter values as a results of the interpolation settings (i.e. Kriging settings for 
each parameter definition). Such as option is very useful to evaluate the inter-
polation quality before running the optimization problem.
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3.2 Parameter Definitions

Choosing the model parameters that PEST can change to minimize the 
objective function is usually the first part of the setup.

An adjustable parameter can be described by its parameter type (e.g., 
hydraulic conductivity) and the assignment method (e.g., a certain geological 
formation).

 The parameter type can be any time-constant material property of the 
FEFLOW model.

 The assignment method can be based on zonally constant, pilot points 
and tied definitions.

The spatial definition of a adjustable parameter (zone or pilot point) can apply 
any elemental selection that is stored in the FEFLOW model or the entire 
model domain. FePEST also support the placement of pilot points in 3D.

Note that the choice for the zones already constitutes a kind of regularization 
(called structural regularization), that has the power to significantly influence 
the calibration process (in a good or bad way).

If making changes to elemental selections in FEFLOW, remember that you 
must reload the model after you have saved them in the FEFLOW file.

3.2.1 Assignment method

An optimization problem commonly comprises many parameters sharing 
identical or similar settings.

To avoid that the user needs to setup these parameters one-by-one, similar 
parameters are defined through a parameter definition. A parameter defini-
tion allows central adjustment of default values of its dependent parameters 
which are created from it. This allows convenient management of large lists 
of parameters.

Usage of a parameter definition differs depending on the choice of the 
assignment method. Possible assignment methods are:

Zonally constant:

The user specifies one or multiple zones in which the value of a parameter is 
to be estimated. A zone is any elemental selection stored in the FEM file. A 
dependent parameter will be created for each of these zones (see 
Figure 3.2). During each model call of a PEST run, a constant value will be 
assigned to the chosen FEFLOW model property in each separate zone.
26 FEFLOW - © DHI



Parameter Definitions
Figure 3.2 Zonal parameter distribution

Interpolate from pilot points:

The user chooses exactly one zone, which can be the entire model domain, a 
layer or an elemental selection (a separate definition is required for each 
zone if pilot points are used).

Within the limits of this zone, a cloud of pilot points is either imported from a 
file or is automatically generated by FePEST. Each of these points represents 
a single parameter of the PEST setup (see Figure 3.3)

The parameter definition of a pilot-point based parameter includes the set-
tings of the interpolation method that is used to interpolate parameter values 
between pilot points. Available options are Kriging (2D or 3D depending on 
the placement of the pilot point ) and Radial Basis functions (only 2D).

Note that FePEST will apply the same settings to regularize the pilot-point 
parameters if the respective option for the Tikhonov Regularization is active.

Figure 3.3 Pilot point based parameter definition

Tied to other parameter definition

A parameter definition can be tied to an existing parameter definition. In this 
case the parameter values within the definition will be changed according to 
the parent parameter definition, always maintaining the ratio of their initial val-
ues. Tied parameter definitions can be associated to zonally-constant or pilot 
point parent parameter definitions.
27



Fundamental Setup
A typical application of tied parameters is to maintain the anisotropy ratio 
between three major conductivities directions. For example, the modeller 
could consider to calibrate only Kxx and then simply update the values of Kyy 
and Kzz based on the first one. Thus, Kyy and Kzz are tied parameter of Kxx.

IFM implemented parameter definition

FePEST allows the possibility to adjust parameter(s) provided directly by a 
FEFLOW plug-in. For example, these IFM-implemented parameters can be 
FEFLOW parameters not supported directly by the FePEST interface or any 
kind of user-defined information.

Also see Section 9.4 for information on how to implement parameters through 
IFM plug-ins.

3.2.2 Parameter Settings

Each parameter definition requires additional configuration of PEST parame-
ters for the optimization problem (Default tab). This information would be 
used to modify the parameter during the task of the model calibration:

Parameter transformation

 Logarithmic transformation often allows faster and quicker reduction of 
the objective function by linearizing of the system).

 A parameter can be fixed, thereby removing it from the optimization.

 The tied parameter will change according to the initial ratio in respect to 
the parent parameter.

Change limit

This setting defines how to determine the maximum offset with that a param-
eter can be changed within a single iteration. Note that relative change limits 
are not allowed if the parameter is log-transformed.

Initial value

The parameter value that is applied in the first iteration. The value assigned in 
the FEFLOW model will be used by default, assuming that this represents the 
preferred value of the expert modeler.

Bounds

An upper and a lower limit can be defined for the parameters. A good 
approach is to use a very low and very high value initially that does not 
impose a restriction to the optimization.
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Scale and offset

Before a parameter value is assigned to the model, it is multiplied with Scale 
and then added to Offset. These settings usually do not need to be changed.

Figure 3.4 Creating a new parameter definition. Choose from Zonally constant, 
pilot point interpolated parameter distributions, tied parameter defini-
tions or IFM implemented. The Defaults tab defines the standard set-
tings for the dependent parameters.

After all the changes described in the previous paragraphs are done, press-
ing the OK button applies the new parameter definition. At the same time its 
dependent parameters are added to the parameter list.

These parameters inherit the default parameters of their parent definition 
(Figure 3.5). If required, changes to settings of individual parameters can be 
done (overriding the defaults), including the removal of parameters.

Working with large lists is easier with a spreadsheet program. The 
Copy/Paste buttons allow a quick transfer to and from other programs using 
the system clipboard.
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Figure 3.5 After a parameter definition has been created (top), its dependent 
parameters appear in the list below.

3.2.3 Parameter Groups

The parameter groups allows the configuration of the derivative calculation 
for the parameters (see section Section 2.1.1. FePEST applies default values 
that have been tested to work with most FEFLOW models, and often adjust-
ments are not necessary when setting up a PEST model.

If the PEST optimization however fails due to bad derivatives calculations 
(which cannot be excluded as every model is different), a reconfiguration of 
these settings might be required. Detailed explanation and literature refer-
ences to the different settings are given in the FePEST help system.

NOTE: The PEST utility tool JACTEST (Section 8.2) is a utility to check for 
bad derivative calculation.

By default, FePEST defines one parameter group for each separate parame-
ter definition and assigns all adjustable parameters to this group accordingly:

 The Derivative method is chosen automatically (option “switch”, starting 
with the more effective 2-point methods, switching to higher order meth-
ods if required)

 The Increment size (set to 1.5% by default) can be increased if minor 
model instability issues are observed. Do not increase this value unnec-
essary, as high values would violate the linearity assumption of the deriv-
ative calculation.

3.3 Observation Definitions

The observations provide the primary (and only) measure that informs the 
optimization algorithm about the model-to-measurement misfit.
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For each observation FePEST requires:

 its type (e.g., hydraulic head, fluid rate budget),
 its location (e.g. an observation coordinates, stored nodal selection),
 the time at that it was recorded (in case of a transient model) and
 the value that was observed in reality.

Because the observation points set in FEFLOW already contain this informa-
tion, it is possible to import them directly from the FEFLOW model.

By default, all observations are weighted with a weight of unity. These can be 
adapted by the user (compare Section 2.1.2).

Supported observation types are all observations of system state (e.g., 
hydraulic head, saturation, mass concentration, temperature and age spe-
cies) and rate and/or period budget values (fluid, mass and heat) depending 
on the models problem class. Reference values are constant values if the 
model is steady state. In a transient model, a time series contains the data of 
observations at different points in time.

Advanced users may also use IFM plug-ins or third party software for other 
types of observations.

3.3.1 Definition of Observations

Observations are defined in a similar way as parameters. If observations are 
of the same type (e.g., observations from the same well field), often similar or 
identical settings are required.

For convenience, and to avoid many repetitive adaptations of these setting 
when creating or making changes to observations, each observation 
depends on an observation definition. A definition allows central adjust-
ment of the default values of its dependent observations (see Figure 3.6). 
This allows a better management of a large number of observations.

Figure 3.6 Observation definitions (top) and their dependent parameters (list 
below).
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Observation type

The observation type can be any kind of process variable available in the 
FEFLOW problem (e.g. hydraulic-head, mass concentration, temperature, 
etc.). In variable-saturation problems using the Richards’ equation in 
FEFLOW, additionally an observation can be defined based on either satura-
tion or moisture content.

In the case the Budget-History Charting option in the FEM file has been 
activated, an observation definition can be created using the Rate Budget or 
Period Budget available depending on the problem class (flow, mass, heat 
and age). 

An observation or a group of observations can be also defined based on a 
User-Data nodal distribution available in the FEFLOW problem. For the 
implementation of this kind of observations, FePEST requires the location of 
the observation points (coordinates) imported from an external file in the 
source section.

Advanced users may choose to create additional observations in the FePEST 
setup, that can be implemented using FEFLOW IFM plug-ins or third-party 
software (see also section Section 9.4).

Figure 3.7 Creating a new observation definition

Source

FePEST can automatically import the observation points stored in the 
FEFLOW model. If the model is transient, it adds multiple observations per 
observation point, each representing a sample point of the respective time 
series.
32 FEFLOW - © DHI



Observation Definitions
Alternatively, observation data can be imported directly from an external 
import file. This option is mandatory from observations definitions based on 
user-data distributions.

3.3.2 Observation settings

In similar manner than the parameter definitions, all the observations in FeP-
EST require additional information for the PEST optimization.

Synchronization of time observations

This option is available only if the FEFLOW file linked to the FePEST problem 
is transient in the FEFLOW Problem Settings. The time value related to each 
observation point does not necessary coincide with the automatic time-steps 
suggested by the Predictor-Corrector scheme in FEFLOW. The user can opt 
to choose if the observation times should be used for the calculations in the 
FEFLOW side. If the synchronization is set as false, FePEST will simply 
make linear interpolation in time between existing time steps to retrieve the 
observation value.

Weights

Each observation used in the PEST problem requires a weight. A weight of 
one is applied by default every time a new observation definition is created. 
However, this value can be overwritten by using any of the three options or 
combinations between them:

 Inverse of measured value: is used as the weight of an specific obser-
vation. This option is practical in cases the observations changed several 
orders of magnitude within the same group (e.g. mass concentration of 
peak values in respect to the tail breakthrough.)

 Inverse of measurement noise: A weight is calculated as the inverse of 
the confidence interval value defined in the observation point list in the 
FEM file.

 Check box: FePEST applies automatically observation weights under 
several user-defined criterion such as inverse of measured values, 
inverse of measurement noise, equalizing groups, declustering spatially 
and declustering time-series.
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Figure 3.8 Defining observation weights

Figure 3.9 Adjustment of automatic weights 

It is possible to change settings of particular observations (overriding the 
defaults). This is required especially when adapting the observation weights 
to achieve better optimization behaviour and results.

HINT: Working with large lists is easier using a spreadsheet program. The 
Copy/Paste buttons allow a quick transfer to and from other programs using 
the system clipboard.
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3.3.3 Observation Groups

FePEST automatically assigns observations of different type to different 
observation groups. This allows PEST to distinguish how strong the different 
groups contribute to the measurement objective function.

In the same way it is possible to allocate observations of the same type to dif-
ferent groups (e.g., to differentiate between hydraulic head measurements in 
different aquifers).

Advanced users may specify an observation covariance file to define the 
weights for these observations.

3.4 Prior Information

Prior information (or prior knowledge) can be described during this step of the 
PEST setup. In most cases, the prior information provided in the Tikhonov 
regularization page, will be preferred over the manual setup of equations of 
this section prior information (see Section 3.5 for details).

The addition of manual prior information follows the standard criteria of the 
prior information equations defined in PEST. These equations of prior infor-
mation allow to define preferred values for parameters or preferred relations 
between parameters. Any deviation form this relationship will contribute to the 
regularization objective functions. As though there are certain similarities to 
observations:

Name

A user-defined name to identify the equation.

Weight

Each equation has a weight to allow to control the strength with that it contrib-
utes to the objective function (relative to other prior informations and field 
observations). Individual weights of prior information should reflect the trust 
that is associated with the underlying assumptions.

Group

It is possible to associate different prior informations to different observation 
groups, hereby defining more multiple regularization groups. The principle is 
the same as for the observation groups. New groups are introduction in the 
section Parameter Groups of the Problem Settings dialog (see Section 3.3).

Equation

A default formula is provided for convenience, which needs to be adapted for 
the specific purpose by the user. The formula itself has to be written in a spe-
cial syntax specified in the PEST manual. If a parameter log-transformation is 
specified in Section 3.2, this has to be considered in the syntax of the equa-
tions. Note that FePEST will not check for correct syntax on its own, however 
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the PESTCHEK feature Tools menu can perform these verification (recom-
mended after each change made to prior information). 

3.5 Regularization

The regularization page in the Problem Settings dialog provides the complete 
set of combination of regularization by prior information (Tikhonov) and math-
ematical regularization (Singular Value Decomposition, SVD-Assist, or Least 
Square).

Figure 3.10 Regularization possibilities in FePEST

3.5.1 Tikhonov Regularization

When activated, Tikhonov regularization can implement three different 
aspects of regularization in the PEST setup:

Automatic regularization mechanisms
FePEST provides three automatic options as regularization definitions for the 
Tikhonov regularization. Advanced users can provide other regularization 
definitions modifying either manually or automatically (utility GENREG) the 
PEST Control File.

Regularization based on initial parameter values

Assuming that the initial parameter value represent the expected values of 
the expert modeller, equations of prior information are created that will penal-
ize departures of parameter values from initial values.

As a result, calibration adjusted parameters will be close to the values pre-
ferred from a modeller’s point of view.
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Regularization based on preferred differences

This level of regularization suggest a preferred homogeneity in the parameter 
distributions between adjacent pilot points. PEST creates prior information 
equations, which basically contains each two adjacent pilot points, and indi-
cate a preferred difference of zero.

Typically, such a regularization approach is intended for zones of the model 
that belong to the same geological unit.

Regularize pilot point using covariance matrix

Pilot-point type parameter values for each definition are regularized taking 
into account the expected correlation (i.e., using a covariance matrix). Differ-
ences in parameter values of pilot points closer than their correlation length 
will be penalized. As a result, smoother parameter definitions will be preferred 
over heterogeneous ones.

The range parameter in the Kriging Settings indicated for each pilot-point 
parameter definition is used to compute the covariance matrix. The larger the 
range value is, the larger the number of pilot points influencing the regulariza-
tion weights.

Objective Function Limits

As described in Section 3.4, the Tikhonov regularization aims at finding a 
minimum of the regularization objective function while observing user-defined 
limits for the measurement objective function (for which the model is still con-
sidered calibrated).

The following settings determine this limit:

Target measurement objective function (PHIMLIM)

This is the limit for the measurement objective function below which the 
model is considered calibrated.

The value can be calculated by summing up the (weighted) measurement 
noise associated with the observations. If this is not possible, a value some-
what higher than the objective function that results from a calibration run with-
out Tikhonov regularization can be chosen.

Acceptable measurement objective function (PHIMACCEPT)

This additional threshold is usually set slightly (5% to 10%) above PHIMLIM. 
PHIMLIM and PHIMACCEPT define a buffer zone for the measurement 
objective function value for stability reasons. In this zone, an objective func-
tion value is tolerated even though it does not meet the target value. This is 
necessary as the parameter upgrade vector will often "miss" the exact limit 
because it relies on a linearity assumption.

Figure 3.11 illustrates how the iteration adapts to these limits.
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Figure 3.11 Development of the regularization and measurement objective function 
during Tikhonov-regularized parameter estimation.

Successive reduction of the objective function Limit (FRACPHIM)

This option allows a different strategy to determine the target objective func-
tion limits. If set to a non-zero value (allowed values are between 0 and 1), 
PHIMLIM is determined by multiplying the last achieved value of the meas-
urement objective function with FRACPHIM.

In this way, PHIMLIM decreases from iteration to iteration. It will however 
never be smaller than the value defined in PHIMLIM.

Optimal values for FRACPHIM are normally in the range 0.1 to 0.3.

FePEST activates this option by default in combination with a very low objec-
tive-function value (these are the same defaults as applied by the PEST tool 
ADDREG1). This improves the well-posedness of the optimization and 
thereby leads to a more stable behavior of the GLMA optimization. The limits 
should however be adapted by the user as these settings might not yield the 
desired plausible parameter values.

See Section 7.3.3 of the PEST user manual for a full discussion of these var-
iables.

Weight Factors and Adjustment

Settings to determine the weight factor can be used for fine-tuning or trouble- 
shooting. Their default values follow general recommendations that are suita-
ble for most applications of PEST.

3.5.2 Subspace Regularization

Subspace regularization methods can improve the stability of ill-posed 
inverse problems and significantly reduce the modelling efforts required for 
an optimization.
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Singular Value Decomposition (SVD)

It is recommended to use SVD for any PEST setup (unless LSQR has been 
chosen, which tends to be faster for PEST runs involving more than 2500 
parameters). FePEST activates this option by default (see Figure 3.10).

The following parameter settings determine the number of singular values/ 
super parameters considered during the optimization:

 Eigenvalue threshold - all super parameters lower than this value will be 
truncated. The default threshold value is set to 1e-6. At this value, the 
optimization is still regarded well-posed, which ensures stability of the 
optimization.

 Maximum number of singular values/super parameters - this limits the 
number of singular values/super parameters to a maximum number.

See the PEST users manual (5th Edition), section 8.4.2: Implementation of 
SVD with PEST for a full discussion of these settings.

3.5.3 Regularize by Super Parameters: SVD-Assist

SVD-Assist is a useful methodology to speed up the calibration of highly par-
ametrized models (often involving the pilot point method).

Either of the following two ways can be used to determine the number of sin-
gular values:

 FePEST uses the SUPCALC tool to determine the optimal number of 
super parameters. This is the default option.

 The number of super parameters can be manually specified. This is par-
ticularly useful if multiple CPUs are used in parallel:

Since each iteration requires one model run per super parameter to calculate 
the Jacobian matrix, optimal speed up is attained if the number of super 
parameters is set to a multiple of total number of slaves used for parallel com-
putations (See section Section 3.6).

3.6 Parallelization

An inherent issue of calibration and uncertainty analysis, scenario runs and 
sensitivity analysis is the large number of model calls and the associated 
computational complexity in terms of each model run-time.

Fortunately, many steps of a PEST run, especially the numerically expensive 
calculation of the Jacobian matrix, is very suitable for parallel computing. The 
use of multiple computers (be it a limited number of office PCs, a HPC cluster 
or cloud-based computers) can reduce the computation time significantly. 
Parallelization can also improve model run-times significantly on a stand-
alone computer.
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In the case of highly-parametrized inversion processes, parallel computing 
may be necessary to finish a computation within the project time frame.

FePEST uses the BeoPEST utility- a network capable version of PEST - for 
obtaining better run-time efficiency. FePEST also transfers the required 
model files to the slave computers.

The port denotes the network (IP) port of the local computer (Host) that FeP-
EST uses for communication. If the default settings conflicts with a different 
application, choose a different port number. Make sure that no router, firewall 
or anti-virus software blocks the network connection even if no remote com-
puters are involved (localhost only).

The slaves show a list of servers that are used to solve model run jobs during 
the PEST run (initially empty). Servers can be added/removed to/from the list, 
and/or the settings of existing entries can be edited.

See also installation instructions for parallel computing.

Host name

The host name specifies the host name or IP-address of the server computer. 
Enter "localhost" to add the local computer to the list.

Note that FePEST has to be started in server mode on all remote servers 
(except the local computer) before commencing the PEST run.

No. of Slaves

The number of slaves is the number of models that will be run simultaneously 
on the computer. In most cases, this will be set to the number of available 
CPU cores on that computer.

Figure 3.12 The parallelization page contains the slave machines running FePEST 
in server mode.

FePEST must be started and set to server mode on each of the slave serv-
ers.
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Figure 3.13 When running in server mode, the current computer acts as a slave 
server that can receive run jobs from another computer.
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Required Settings
4 Parameter Estimation: History Matching/Calibration

The terms parameter estimation, history matching and calibration are used 
synonymously in this document.

History matching of a model requires completion of the fundamental setup as 
explained in Section 3.

After the fundamental setup has been completed, PEST can be used for his-
tory matching. The history matching process targets the estimation of a 
parameter set that optimally satisfies both, the historical observations and the 
prior knowledge (if provided). The resulting parameter set is then referred to 
as a calibrated model.

This section explains the required settings, how the run is commenced and 
how to interpret the visual feedback during and after the run. Exporting a new 
FEFLOW model with optimized parameters is the final step.

4.1 Required Settings

4.1.1 Optimization Control

By default, FePEST activated the option for doing history matching and 
applies the respective PEST operation mode accordingly.

Note that the FePEST operation mode is slightly different than the PEST 
operation mode: If "Estimation" is set, FePEST sets the "regularization" mode 
(if the calibration involves Tikhonov regularization) and "estimation" mode (if 
the calibration does not involve Tikhonov regularization).

A second important option is the NOPTMAX setting in the termination criteria 
setting. For calibration purposes, this option must be set to "Number of itera-
tions”. It assumes a sufficiently high value with the default set to 30.

4.1.2 Other Settings

The default settings are well suited for a range of optimization processes. 
However, these can be altered for fine-tuning and trouble-shooting. The indi-
vidual settings will not be explained here, but more information is provided in 
the FePEST help system and the PEST documentation.

See Section 4.2.2 Control Data of the PEST user manual (5th Edition) for a 
full discussion of these variables.
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4.2 Starting PEST

The history matching process is initiated by sequence of steps, as described 
below.

4.2.1 Preflight Checks

Before running the model, a check of the PEST setup is recommended. 
PEST provides several tools (PESTCHEK, TEMPCHEK and INSCHEK) that 
can be run through the Estimation menu of the FePEST user interface.

These utilities check the most important files of the PEST setup, namely the 
control file, the template file and the instruction file, for errors and warnings. 
Errors prevent PEST from running whereas the warnings indicate possible 
problems and provide suggestions for improving the setup.

Figure 4.1 The Checks utility in the Estimation menu checks the PEST setup for 
validity and provides suggestions for improvement.

4.2.2 Running PEST

PEST is started using the Run button in the toolbar. Usually no changes are 
required for the sequence of steps in the prompted dialog (see Figure 4.2).
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Figure 4.2 The Run dialog. Usually all options will be active.

The sequence entails the following steps:

 Create the files required by PEST
FePEST generates the required PEST files according to the settings.

 Recalculate Jacobian Matrix
This option is available if the Jacobian matrix is already computed in a 
previous PEST run (file with extension JCO). Advanced users can 
choose to deactivate this option to save computational effort.

 Start PEST
This calls PEST and starts the history matching process. The FePEST 
windows display the progress of the PEST iteration.

Experienced users of PEST may choose to generate the PEST files without 
having to start the PEST run. See also Section 9.

It is also possible to interrupt (pause) or stop the PEST run. A stopped PEST 
run can be continued at a later point in time, even if FePEST is closed during 
its execution. This is particularly useful if the optimization is interrupted, for 
example, due to a computer shut down/ restart etc.

4.2.3 Output during PEST Run

During the PEST run, FePEST reads and analyzes the output of PEST and 
displays key information in the form of several panels and charts:

Output

The primary output of PEST is shown in this window. Users familiar with the 
output of PEST will find information (that is omitted in PEST) in the FePEST 
output here.

Status

The key information on the status of the PEST run is shown in the Status 
panel.
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Figure 4.3 The Status panel contains key information about the progress of the 
optimization.

Objective Function

The objective function and its profiling illustrates the progress of the optimiza-
tion run and makes it easier to identify problems (if any) during the run. In 
principle, if everything is done correctly, the function values should be mono-
tonically decreasing.

Figure 4.4 The development of the objective function is shown in the correspond-
ent panel.

Simulated vs. Observed

The panel shows a scatter plot comparing the simulated values against 
(observed) reference values.
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Simulated vs. Time

The time-dependent observations in the model are plotted against the meas-
ured time series. This panel is not available for steady-state models.

Due to the restricted size of the text panels, these may not contain the com-
plete file. In such a case, click the “View” button to open the corresponding 
file in an external text editor.

4.2.4 Output after PEST Run

PEST provides additional statistics after the history matching process. FeP-
EST displays these and other key information in additional panels.

 Run Details
PEST saves important information about the setup and results of its run 
into a run record file. This can be viewed in the Run details panel.

 Parameter Sensitivities
For all iterations, PEST saves the composite parameter sensitivities in 
the sensitivities file. These can also be viewed in the Run Details panel. 
This information can be particularly useful, for example, to identify the 
hypersensitive parameters. The composite sensitivity of a parameter is a 
measure of the sensitivity of all model outputs for the associated obser-
vations for this parameter. By inference, it is a measure of the informa-
tion content of the calibration data set with respect to this parameter.

 Observation Sensitivities
PEST writes the observation sensitivities of the last iteration to an obser-
vation sensitivities file. This is shown in observation sensitivities.

 Residuals
This panel lists the measured and simulated value for each model obser-
vation, along with their differences (the residual).
The native (non-weighted) residuals enable the identification of well-
matched and poorly-matched calibrated observations. The weighted 
residuals (shown separately) offer a valuable check for an appropriate 
choice of observation weights.
The content of this tab is identical to the residuals file created by PEST.

 Covariance and Correlation matrix
Covariance and Correlation matrices are only available when not using 
regularization.
These tables show the covariances and correlations between the param-
eters, respectively. The latter is normalized to values ranging from 0 (no 
correlation) to 1 (strong correlation). A color gradient facilitates interpret-
ing the values.
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 Eigenvectors and Eigenvalues
Eigenvectors and Eigenvalues are only available when running PEST in 
estimation mode and not using singular value decomposition.
Each observation contains some information for identifying the calibrated 
parameters. Since the observations and parameters are often correlated, 
the information provided by a particular observation might overlap with 
the information from a different observation. Therefore, the number of 
observations is not necessarily proportional to the combined information 
provided by these observations.
By doing Principle Component Analysis (PCA) on a covariance matrix, 
orthogonal combinations of parameters are identified. With PCA, it is 
also possible to know the extent to which these combinations are 
informed by the calibration process. These combinations are the eigen-
vectors of the covariance matrix. A low eigenvalue associated to an 
eigenvector indicates low post-calibration variability. Conversely, a high 
eigenvalue implies high post-calibration variability.
The ratio of highest to lowest eigenvalue is a measure of stability for the 
inverse problem and indicates whether the problem is well-posed. If the 
value exceeds 5e-7, the problem is considered to be ill-posed. It is not 
possible to solve an ill-posed problem using PEST without using regular-
ization methods (namely, Tikhonov or SVD). Solving a problem as such 
without regularization may lead to numerical instabilities and erratic 
behaviour of the objective function.

The contents of the text panels can be easily transferred to a spreadsheet 
program for further processing and visualization.

See section 5.2: The PEST Run Record and section 5.3: Other PEST Output 
Files of the PEST user manual (5th Edition) for a full discussion of these out-
put files.

4.3 Export to FEFLOW

After PEST has finished its optimization (either by reducing the objective 
function to an acceptable level or by meeting another termination criterion), 
FePEST displays a list of resulting parameter values.

For further inspection, one can save the resulting model in a new FEM file 
and open it using FEFLOW.

The optimized parameter may be used as the initial parameter values for fur-
ther use of PEST utilities, for example for doing predictive analysis.

To return to this dialog at a later point in time, use the Show Results option in 
the Estimation menu.
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5 Predictive Analysis: Best and worst case scenarios

Predictive Analysis requires the completion of the fundamental setup. It is fur-
ther recommended to successfully run a history matching (calibration) pro-
cess before starting predictive analysis. The parameter set found resulting 
from the history matching process is used as the initial parameter values in 
the current FePEST setup (in the Show results panel).

It is common to have multiple calibrated models, especially for environmental 
models. However, the predictions made by using these models may vary sig-
nificantly despite the fact that they all honour historical data. The prediction 
attained by a particular model is therefore just one out of the possibly many 
outcomes.

Predictive analysis is a simple tool in PEST for non-linear model predictive 
error and uncertainty analysis. It searches for the calibrated model with the 
maximum or minimum key prediction. This facilitates identification of the 
worst-case and/or best-case scenarios among the set of calibrated models.

However, the use of PEST in predictive analysis model is restricted to well-
posed problems only. This implies that it is applicable only to cases where the 
variability result from measurement noise. In case of an ill-posed problem, 
advanced users may choose to use PEST methods such running PEST in 
Pareto mode.

Further reading: PEST Manual (5th Ed.) Ch. 6: Predictive Analysis

5.1 Required Settings

5.1.1 Optimization Control

The required operation mode in PEST is the Predictive analysis mode; the 
optimization control section of the Problem Settings dialog contains the 
respective setting.

5.1.2 Observation and Type

Predictive analysis aims to either maximize or minimize a key prediction while 
maintaining the objective function below a user-specified value.

The prediction could be any observation (e.g. a specific hydraulic head) that 
is defined during the fundamental problem setup. Usually, this particular 
observation assumes zero weight so that it is excluded from the measure-
ment objective.
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The Predictive Analysis section of the problem settings dialog prompts the 
settings for the choice of the prediction whose value must be maximized/min-
imized, and for the maximum value permitted for the objective function.

5.1.3 Objective Function Limits

The maximum/minimum prediction is sought subject to the constraint of main-
taining the calibrated state of the model. It is important to define a maximum 
threshold for the objective function value. The model is considered to be cali-
brated if the value of the objective function is less than the maximum thresh-
old. This is done by providing objective function limits. The model is 
considered to be calibrated only if the value of the objective function is less 
than the defined target objective function.

A common choice is to chose a value which is 5-10% greater than the value 
of the objective function obtained in the preceding calibration process. How-
ever, it should be noted that the choice can significantly impact the result. If 
the statistics of measurement noise are known, the limiting target objective 
function could be set in accordance with theory. See the PEST manual for 
more details.

See the PEST Manual (5th Ed.), Ch. 6.2.2: PEST Variables used for Predic-
tive Analysis for a full discussion of these variable.

5.1.4 Other Settings

The default settings are chosen such that they are suitable for doing predic-
tive analysis for many cases. The individual settings will not be explained 
here, but a detailed information is provided in the FePEST help system and 
the PEST documentation.

5.2 Starting PEST

To start the predictive analysis, follow the same steps as described for the 
parameter estimation in Section 4.

5.3 Output during Predictive Analysis

The objective function and its profiling illustrates the progress of the optimiza-
tion run.

If the initial parameter set is not from a calibrated model, PEST runs a calibra-
tion process to ensure that the objective function value is less than the 
defined target objective function.
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PEST then starts maximizing/minimizing the model prediction. The objective 
functions landing between target objective function and acceptable objective 
function are permitted. Outputs follow after the PEST run is completed.

5.4 Estimation Results

The first line of the parameter list show the maximum or minimum prediction 
value found. The corresponding parameter set may or may not resemble the 
calibrated model, and can be exported to FEM file for further investigation.

PEST also generates additional statistical data. These are shown in addi-
tional panels after the model run.
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Criteria for randomly generated parameters
6 Pre-calibration Monte Carlo

FePEST provides an option for doing a “pre-calibration” Monte Carlo analysis 
directly from the Problem Settings dialog (see Figure 6.1). The “pre-calibra-
tion” entails the use of Monte Carlo method before calibrating of the FEFLOW 
model. This is particularly useful to have a first idea of the sensitivities of the 
model output to certain parameter variation based on the prior knowledge of 
the modeller (e.g. range of conductivities for a specific unit, etc.). The results 
of the pre-calibration Monte Carlo analysis can then be used in the calibration 
process, for example, with a primary focus on certain model parameters.

6.1 Criteria for randomly generated parameters

The Monte Carlo Analysis enables the user to randomly generate set of 
parameters (zonally-constant or pilot points) based on a (user-defined) crite-
ria:

 Number of samples: maximum number of parameter realizations for 
Monte Carlo analysis.

 Distribution type: this can either be a normal distribution or a uniform 
distribution. The defined distribution type is used for the random genera-
tion of the parameter. If the parameter definition uses log-transform, the 
parameter generation also result in a log-transformed values.

 Mean method: the random set of parameter is centred on an user-
defined mean value, which could either be the current initial value of the 
parameter or computed as the midpoint of the bounds of the parameter. 
This information is provided in the section Parameter Definition of the 
Problem Settings dialog.

 Respect ranges: it is possible for some set of parameters, generated by 
a fully-random process, to fall outside of the expected parameter ranges 
(for example, defined for the calibration). The user has the option to set 
the ranges of the parameter (including tied parameters) accordingly. 

 Uncertainties: the uncertainty associated to the distribution of the 
parameters (i.e. how much a parameter can vary according to modeller’s 
knowledge) can be prescribed by three options:
– Bounds: The standard deviation for the parameter generation is 

computed from the parameter bounds automatically. This is calcu-
lated as the difference between the log-transformation of the param-
eter bounds divided by 4. The rough estimation is based on the 
assumption that the parameters are log-normally distributed, and the 
intervals between respective parameter bounds correspond roughly 
to 95% pre-calibration parameter confidence intervals. The differ-
ences between these bounds then correspond to approximately 4 
parameter standard deviation. Alternatively, the standard deviation 
can be provided by the user in the input field.

– Covariance matrix: the same covariance matrix used for the Tik-
honov regularization is used as a measure of uncertainty to compute 
the random parameters.
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– File: Experienced users can provide an “uncertainty file (*.unc)” for 
the standard deviation or covariance matrix of a parameter. The 
uncertainty files conform to certain PEST definitions. It can also pro-
vide measures of uncertainty either for a group of parameters or to 
specific parameters. 

 Seed number: By default, the parameters generated using the Monte 
Carlo Analysis in FePEST are fully random. This implies that the same 
parameters cannot be obtained between different FePEST problems 
even when the same distribution type, mean value and uncertainty 
source is considered. However, identical parameters can be obtained by 
providing the same seed number across all FePEST problems.

The Monte Carlo option in FePEST (either pre-calibration or postcalibration) 
automatically generates parameter values to all available and active parame-
ter definitions in the project, i.e. defined in PEST Control file (*.pst).

6.2 Optimization of random parameter sets

After the parameters are randomly generated, the user may decide to runa 
separate PEST problem for each parameter set by activating the option Opti-
mize. In doing so, FePEST automatically creates a new PEST Control file for 
each set of parameter generated. The PEST run is fully parallelized using the 
BeoPEST utility, as described in the Parallelization section of the Problem 
Settings dialog.

Figure 6.1 Optimization page: Setting pre-calibration Monte Carlo mode.

The optimization option for pre-calibration Monte Carlo analysis allows the 
user the following (Figure 6.2):

Maximum number of iterations and threshold value

A PEST problem is run separately for each parameter set that is randomly 
generated using the Monte Carlo analysis. By default, the number of PEST 
iteration is set to 30 cycles. The PEST optimization will terminate if the maxi-
mum number of PEST iterations is reached and/or the threshold objective 
function (Phi parameter) is achieved.
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Objective function

A PEST problem is run separately for each parameter set. No optimization is 
performed. The aim is to estimate the current objective function for each of 
the parameter sets without any adjustments. A FEFLOW model is run once 
per each Monte Carlo realization.

Jacobian and statistics

PEST is run in a special estimation mode to compute the Jacobian matrix and 
statistics for each parameter set.

Jacobian only

PEST is run in a special estimation mode to compute the Jacobian matrix for 
each parameter set. Note that each computation of the Jacobian matrix 
requires a FEFLOW model run.

.

Figure 6.2 Monte Carlo Analysis: Settings and options.

6.3 Running FePEST under Pre-calibration Monte Carlo mode

To run FePEST with the pre-calibration Monte Carlo mode, the same steps 
are required as for other operation modes (e.g. estimation or prediction). The 
run dialog is prompted either by clicking the Run button or from the Estima-
tion menu. The dialog prompts the user to create the PEST files for the Monte 
Carlo analysis and/or to run the problem. (Figure 6.3).
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.

Figure 6.3 Running pre-calibration Monte Carlo analysis in FePEST.

If the option of creating files is enabled, standard PEST files (such as the 
PLPROC files), regularization files, and several other files (as described 
below) are created under the pre-calibration Monte Carlo mode:

Parameter file (*.par)

By default the name of this file is composed by mc_rand followed by a num-
ber, ranging from 1 to the total number of samples for the Monte Carlo analy-
sis. The file contains four columns, namely the parameter name, value, scale 
and offset. The values are in fact the randomly generated values (using the 
normal or uniform distribution) for each parameter. The scale and offset are 
typically set to 1 and 0 respectively.

Monte Carlo PEST file (mc.pst)

This is a PEST control file, which is the same as the project control file 
(case.pst) except that mc.pst is contains the values of the parameters from 
each realization. The optimize option in FePEST expects a PEST control file 
for each parameter realization. Instead of creating separate files, FePEST 
updates the files after each PEST run.

Parameter summary table(*.dat)

A file under the name mc_rand_mulpar is created after executing the PEST 
utility MULPARTAB. This utility reads all the parameter files contained in the 
FePEST working directory and creates a file containing the information from 
all the parameter files.

6.4 Results of the Pre-calibration Monte Carlo Analysis

For generating random parameters, FePEST uses the PEST utility RAND-
PAR. After “Pre-calibration Monte Carlo Analysis” is successfully finished, two 
additional dialogs appear in FePEST, namely “Parameter Uncertainty” and 
“Observation Uncertainty”. The first one is always visible whereas the sec-
ond chart appears only if the user activates the option “Optimize” in “Monte 
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Carlo Analysis” settings. The charts plot a histogram for the parameters and 
observations, respectively.

A histogram plot for “Parameter Uncertainty” is shown in Figure 6.4. Different 
parameters can be visualized by changing the parameter name directly in the 
combo box available. The plots for “Observation Uncertainty” follow the same 
pattern.

The “Observation Uncertainty” dialog enables the user to see the histograms 
for each observation defined in the FePEST project (e.g. process variables, 
rate and period budgets, IFM-implemented observations, etc.).

Moreover, the results of the uncertainty plots can be exported from the “Prop-
erties” dialog of the chart in case of further post-processing.

Figure 6.4 Monte Carlo Analysis: Parameter uncertainty chart.

All the different model scenarios created by the “Pre-calibration Monte Carlo 
Analysis” are available from the menu “Results - Show Results” (as shown 
in Figure 6.5). Each scenario can be saved in a FEFLOW FEM file. This is 
done by selecting the relevant column followed by clicking the “Save” button.
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Figure 6.5 Pre-calration Monte Carlo results.
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7 Post-Calibration Monte Carlo

The way in which “Post-Calibration Monte Carlo analysis” in FePEST works 
is very similar to the previously discussed “Pre-calibration” option. However, 
post-calibration analysis can benefit from pre-calibration results (i.e. Jacobian 
matrix and super parameters from SVD-Assist) to generate a set of random 
realizations resulting in an “almost calibrated” set of parameters.The “almost 
calibrated” implies that the measurement objective function is reached with 
minimum effort.

7.1 Settings of the Post-Calibration Monte Carlo

The operation mode of “Post-Calibration Monte Carlo” is defined in the Opti-
mization Control section of the Problem Settings dialog (as shown in Figure 
7.1).

Figure 7.1 Activating post-calibration Monte Carlo operation mode in FePEST.

“Post-calibration Monte Carlo” is similar to the Pre-calibration Monte Carlo” 
with the exception of the null-space projection. The Monte Carlo based 
parameter generation in FePEST, calls the PEST utilities, namely RANDPAR 
and PNULPAR (one after the other), to create randomly generated parame-
ters that are “almost calibrated”. 

The null space projection requires the dimension of the solution space (num-
ber of super parameters). This is already known to FePEST as the problem is 
already calibrated. The user can further select between the “Auto” or “Man-
ual” option to set the dimension of the solution space (Figure 7.2):

 Auto: FePEST will run the PEST Utility SUPCALC to determine the num-
ber of super parameters in the system and uses this to carry out the null-
space projection.

 Manual: the user is prompted for the dimension of the solution space.
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Figure 7.2 Monte Carlo Analysis: Post-Calibration settings.

Similar to “Pre-calibration Monte Carlo”, the post-calibration mode also allows 
the user optimize the FEFLOW problem for each sample set. If the optimize 
option is active, PEST will do history matching. This is done relatively quickly 
as the optimization starts with an “almost calibrated” set of parameters.

7.2 Running FePEST under post-calibration Monte Carlo mode

The button “Run” should be clicked to execute the “post-calibration Monte 
Carlo” mode. Similar to other modes, it first creates the PEST files. In addition 
to the RANDPAR output files (mc_rand*.par), some new parameter files 
appear in the working directory under the name mc_nsp*.par. These files 
contain the “almost calibrated” parameters that result from the PNULPAR util-
ity.

7.3 Results of the Post-calibration Monte Carlo Analysis

The “Parameter Uncertainty and Observation Uncertainty” histogram charts 
are also available for this mode. The “Parameter Uncertainty” dialog plots his-
tograms for each parameter definition. Note that the histograms now relate to 
the parameters after null-space projection, i.e. “almost calibrated” parame-
ters. Similarly, the “Observation Uncertainty” dialog plots histograms for each 
observation definition. Figure 7.3 shows an example of these two charts after 
optimization.
60 FEFLOW - © DHI



Results of the Post-calibration Monte Carlo Analysis
Figure 7.3 Results of post-calibration Monte Carlo analysis: Parameter Uncertainty 
and Observation Uncertainty charts.

If the optimize option was enabled, a table summarizing the parameter values 
and the measurement objective function can be accessed from the menu 
“Results - Show Results”.

Figure 7.4 Post-calibration Monte Carlo Analysis results.
61



Post-Calibration Monte Carlo
62 FEFLOW - © DHI



Sensitivity Export
8 Other Tools

8.1 Sensitivity Export

Linear sensitivity indicates how the parameters influence certain observa-
tions. This is expressed in terms of derivatives (saved in a Jacobian matrix) 
that are calculated during the optimization.

The derivatives (also referred to as sensitivities) are a valuable by-product of 
the optimization and they can be exported for further investigations.

8.1.1 Required Settings

Once the Jacobian matrix is calculated, the sensitivities are ready for export. 
This is done whenever optimization is performed (i.e. with any mode - param-
eter estimation or predictive analysis).

If no optimization is done, the NOPTMAX setting in the Termination criterion 
settings can be set to "Jacobian only" (-1). With this setting, PEST calculates 
the Jacobian matrix of the first iteration and terminate without making any 
changes to the initial parameter values.

Further reading: PEST Manual (5th Ed.) section 2.2.9: Termination Criteria.

8.1.2 Export of Sensitivities

The “Sensitivities” feature in the “Estimation” menu executes the JROW2VEC 
utility of PEST. This exports the sensitivities of parameters for the selected 
observations. The resulting table can be

 transferred to a spreadsheet program for further processing (using the 
“Copy” option), and/or

 exported to an ASCII table (*.dat) file. This is done in conjunction with the 
spatial maps that relate the parameters to their respective zones or pilot 
point locations. The sensitivity maps can be created in FEFLOW or GIS 
software (a FEFLOW example is shown in Figure 8.1).
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Figure 8.1 Sensitivity maps (plain view of layer 5 and cross-section of indicated 
line shown.) of hydraulic conductivity in a 3D model. These are created 
by spatial interpolation of pilot point parameter sensitivity. White line 
indicates the water table.

8.2 Model Stability Tests (JACTEST)

As discussed in Section 2.1.1, it is important that the numerical model is sta-
ble enough to reproduce observation - parameter relationships.

As a measure of trouble-shooting, PEST provides a tool (JACTEST) to check 
if the model is running sufficiently stable to calculate the Jacobian matrix. 
This tool can be activated using FePEST with the “Model Stability” option in 
the “Estimation” menu.

JACTEST runs the model multiple times with incremented/decremented 
parameter values for derivative calculation and plots them against the 
selected model outputs (observations).

Further reading: Addendum to the PEST Manual (5th Ed.) section 3.20: 
JACTEST

8.2.1 Using JACTEST

If PEST fails to reduce the objective function and is suspended due to bad 
derivatives, it is recommended to stop PEST (if still running). Open the 
“Show Results” dialog and “Apply” the latest values as initial parameter 
values (you may want to save the FPS file now under a different name).

Open the “Model Stability” dialog from the “Estimation” menu. The user is 
prompted to do the following:
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 Specify the parameters to be tested - only the parameters that are sus-
pected to cause instabilities should be chosen here.

 Specify the number of iterations to be performed for each parameter. A 
value of 4 (or greater) should at least identify the cases where parame-
ter–observation relations are random. 

After the calculation has finished, the diagram window shows the resulting 
observation values. Stability of the model is ensured if the slopes are similar 
(with slight changes). An example for a stable model is shown in Figure 8.2.

Figure 8.2 JACTEST result indicating stable model behaviour. Two parameters are 
incremented / decremented four times each by 1.5 % around the initial 
value, the resulting values for a particular hydraulic head observation 
are plotted.

However, if the parameter values change randomly (and significantly), noise 
dominates the observation. It is the useful to identify the affected parameter–
observation combinations, and open and run the model in FEFLOW to find 
and solve the instability issue.

8.3 Linear Analysis (GENLINPRED)

The PEST Utility GENLINPRED stands for general linear predictive uncer-
tainty/error analyser. This utility driver sets different utilities to carry out the 
assessment of the uncertainty and/or error variance of a parameter or predic-
tion. Some of the tasks undertaken by GENLINPRED utility in FePEST are 
summarized below:

 Estimation of the optimal number of dimensions of the calibration solu-
tion and null spaces.
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 The parameter identification and relative reduction of the error variance 
of each parameter. It also computes the relative uncertainty variance 
reduction of each parameter.

 Calculation of the solution and null space components of the total error 
variance of a specific FEFLOW prediction at different levels of singular 
value truncation. It follows with an evaluation of the number of pre-trun-
cation singular values employed in the calibration of a FEFLOW model. 

 Estimation of the uncertainties for the pre- and post-calibration stages. 
 Contribution to the pre- and post-calibration error variance and/or uncer-

tainty of a nominated prediction (parameter) made by different parameter 
groups or individual parameters.

 The worth of different observation groups or different individual observa-
tions for lowering the post-calibration error variance and/or uncertainty of 
a nominated prediction (parameter).

The PEST Utility GENLINPRED is available in FePEST from the menu Esti-
mation - Utilities. GENLINPRED dialog requires certain inputs depending on 
the specific tasks. Further details of the parameters can be found in the 
Addendum to the PEST Manual.

After GENLINPRED is run, all the results are available in the Linear Analysis 
tab in FePEST. For a more comfortable visualization, the PEST result file can 
be directly opened from FePEST by pressing the button “View”.
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Figure 8.3 Linear Analysis (GENLINPRED).

8.4 Sensitivity Analysis (SENSAN)

Sensitivity analysis of particular model outputs to particular model configura-
tions (i.e. material properties) is a common modelling task. Such a task can 
also be considered as the initial step before model calibration in order to 
understand the relevance of the model inputs.

FePEST provides a fast way to estimate sensitivities, relative differences and 
model outputs from a specific set of model parameters. For this task FePEST 
uses the PEST Utility SENSAN.

A user-defined parameter list can be imported that can be used to configure 
several FEFLOW model scenarios. In principle, unlimited number of model 
runs can be used in SENSAN, but the utility is not parallelized in PEST. 
Therefore, it is best to chose the maximum number of scenarios such that the 
computational resources are not exceeded. If the uncertainty of the parame-
ters to the model outputs has to be explored, the Monte Carlo Analysis in 
67



Other Tools
FePEST is recommended as it takes advantage of the parallelization capabil-
ities.

8.4.1 Definition of Parameter Variability Sets

The definition of the variability parameter set can be carried out either manu-
ally or automatically (Figure 8.4). The manual addition of model scenarios is 
included by clicking on the button “New” and then modifying the parameter 
value in each new row of the parameter variability table. The automatic gen-
eration of parameters involves the modification of all active parameter by a 
specified factor (e.g. 10% of the initial parameter value).

Figure 8.4 Sensitivity Analysis Utility (SENSAN): Parameter variability set.

Once the parameter variability sets are defined, SENSAN utility is executed 
by pressing the button “Recalculate”. Immediately, the information about 
SENSAN run and its progress is available in the Output tab in FePEST.

After SENSAN has finished to run all the FEFLOW model scenarios, a sum-
mary table of the results from the multiple runs is available in the Sensitivity 
Analysis dialog. This table includes three main results (Figure 8.5):

 Absolute output: includes the different parameter set and model out-
puts. The model outputs are the standard observation points (i.e. infor-
mation of the FEFLOW process variables), rate/period budgets, IFM-
implemented observations, etc.

 Relative differences: contains the estimate of the relative differences 
(absolute differences) for all the parameter variability sets with respect to 
the initial parameter value (i.e. problem settings - parameter definitions).

 Sensitivities: the sensitivities of all the parameter variability sets with 
respect to the initial parameter value are listed.
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Figure 8.5 Results of Sensitivity Analysis Utility (SENSAN): Absolute values, rela-
tive differences and sensitivities.

All the information available in the different section of the Sensitivity Analysis 
dialog can be copied entirely to any spreadsheet editor or text editor for fur-
ther post-processing (if needed).
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Creating the PEST Setup
9 Customized PEST Setups

PEST is a model-independent parameter estimator and is easy to integrate 
with most numerical models. The transparent design of its file setup allows 
the user a lot of flexibility for customization and implementation of desired 
functionality.

One of the challenges during FePEST development was to make sure that 
PEST setup also maintains its flexibility and that it could be used inde-
pendently of FePEST. FePEST provides a convenient user interface to set up 
the PEST files, but at the same time, the user is free to continue working with 
PEST in the traditional way (i.e. by directly editing its configuration files and 
running its tools from the command line).

This release of FePEST implements those PEST features that are commonly 
used for model calibration. As it was discussed before, PEST has a lot more 
to offer.

Experienced users of PEST could potentially benefit from features like Pareto 
methods or Null-Space Monte-Carlo analysis, or editing certain PEST varia-
bles or options that are not accessible through the FePEST GUI. Implementa-
tion of own pre- or post-processing code (including third-party software and 
IFM plug-ins) into the PEST iteration loop might also be desired.

To benefit from both, FePEST and traditional PEST, it is ideal to configure the 
PEST setup in FePEST and generate the respective files that can be edited 
(if desired). Finally PEST can be started (in some cases, this can be done 
again from within FePEST).

9.1 Creating the PEST Setup

The PEST setup files are created when the PEST run is commenced. To edit 
the files, press the run button, but disable the options for running PEST (and 
recalculating the Jacobian, if applicable) before pressing the OK button (see 
Figure 9.1).
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Figure 9.1 Settings in the Run dialog to create the PEST files.

The Checks option will also initiate the creation of the files if these are not 
present when it is executed.

9.2 Convenience Tools

To make the manual editing of the file setup easier, and to allow quick access 
to the relevant files and locations, the following features appear in the “Esti-
mation” menu of FePEST after the PEST files have been generated.

 Checks
Runs the PEST error check tools PESTCHEK (checks the control file), 
INSCHECK (checks the instructions file) and TEMPCHEK (checks the 
template file). Errors and warnings - if raised - will be shown in the dialog.

 Open work folder in explorer
Use this option to open the work folder, to operate with files or to open 
them for editing.

 Open work folder in console window
Use this option to open a new command line window, from where PEST 
(and other) commands can run.

 Open control file
Directly opens the PEST control (*.pst) file in the standard editor.

 Show command
Shows a command line string with that the PEST run can be initiated. 
Use this command if you want to run PEST outside the FePEST GUI.

9.2.1 File Structure

Figure 9.2 shows the basic file structure as it is created by FePEST for the 
simplest case. Additional files may be present depending on the selected 
methods.
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 PEST script (run_pest.bat)
This script file is executed when the PEST run is started by the user 
within FePEST. Besides other commands, the PEST executable is 
called. The content of this script will vary depending on the settings done 
in FePEST (e.g., SVDAPREP will be run from this script if SVD-Assist is 
active).
Change this script to implement additional commands to the overall 
PEST process.

 Model script (run_model.bat)
This script is executed by PEST directly to commence a model call (It is 
cited as the model command in the PEST control file). The actual 
FEFLOW execution is cited in here.
Add commands to this file that should be executed with every model run.

 FePEST input file (<case>.fpi)
PEST writes parameter values to the FePEST input fie (as advised in the 
respective template file), from where they are read by FePEST. The for-
mat is kept very simple, thus that user-specific scripts or plug-ins can 
access it.

 FePEST output file (<case>.fpo)
FePEST writes observation values to the FePEST output file, from where 
they are read by PEST (as advised in the respective instructions file). 
Once again, a very simple format is used thus that user-defined scripts 
or plug-ins can access this file.

 PEST control file (<case>.pst)
This is the primary PEST control file which defines the configuration of 
PEST. Edit this file to make changes that are not supported by FePEST.

 SVDA files (super.pst and others)
If SVD-Assist is used, a second pest setup will appear in the directory 
after SVDAPREP has been executed by the PEST script.

 Supportive files
Other files may appear depending on settings. E.g., several PLPROC 
files will be generated if the pilot-point method is applied, and a covari-
ance matrix will be created by PPCOV if pilot-points are regularized.
The FePEST help contains a detailed description of these and other files.
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Figure 9.2 PEST file structure created by FePEST. Additional files may be present depending on the 
used methods (e.g., SVDA or pilot points)

9.3 Running Customized PEST Setups

A customized setup of files can be run in two ways: Either from within or out-
side of FePEST:

Run from within FePEST

This option is more convenient and should be preferred if applicable. Click on 
“Run” again, but deactivate the Create Files option this time (otherwise, the 
files would be overwritten, see Figure 9.3).

Figure 9.3 Settings in the Run dialog to run PEST without recreating the file setup.

FePEST will commence the PEST run by running the PEST script 
(run_pest.bat under windows), including all user modifications.

Note that because FePEST parses the primary output of PEST during run-
time, FePEST visual feedback might fail partially or completely if the PEST 
output changes significantly due to the user modifications.
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PEST script from command line

The FePEST is part of a superordinate batch run, the PEST script (or its con-
tents) can be incorporated into another script.

Even though visual feedback cannot be provided any more, FePEST (called 
in its simulation mode) still ensures that parameters and observations are 
correctly transferred between FEFLOW and PEST.

9.4 Integrating IFM Plug-ins and Third-Party Code

When creating a new observation definition or parameter definition, FePEST 
offers the type "IFM implemented" to add a specified number of additional 
parameters to the PEST file setup. These can be directly modified by an IFM 
plug-In or a third-party code (e.g., a script or another program).

IFM plug-ins

An IFM plug-in must be attached to the FEFLOW model and registered in 
FEFLOW before the PEST run is started. If parallelization involves remote 
servers, the plug-in must be installed on all remote machine as well (these 
will not be transferred automatically).

It opens the fpi-file during run-time of the model to read parameters, and 
opens the fpo-file to save observations.

Scripts and third-party software

Any program used for additional postprocessing can access the fpi (to read 
parameters) and fpo file (to save observations) accordingly. To include them 
in the optimization, they have to be started appropriately from one of the 
batch files (either the model batch file or the pest run batch file).

For user-defined parameters, consider creating a new parameter group with 
appropriate settings for the derivative calculation.
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Conceptual Model
10 FePEST Tutorial

For this exercise, a new FEFLOW file fepest1.fem is created based on the 
original demonstration-exercise file exercise_fri_13.fem. At this stage, all 
boundary conditions, material properties and problem settings have already 
been assigned. The file is located in the folder femdata in the tutorial section.

While a steady-state flow problem is considered here, the same workflow can 
be followed for other FEFLOW problem classes (including transient simula-
tions) as well. The tutorial covers the four main steps that apply to any FeP-
EST problem:

 Definition of observation points (in FEFLOW and/or FePEST)
 Definition of parameter zones (in FEFLOW)
 Definition of a PEST problem (in FePEST)
 Post-processing of PEST results (in FePEST and FEFLOW).

10.1 Conceptual Model

The material property Conductivity K_xx is calibrated in this FePEST demo 
exercise. Conductivity measurements were taken in different locations at the 
surface level (Layer 1 in FEFLOW). Initially, the spatial distribution of conduc-
tivity in FEFLOW for this slice was computed by means of a linear Akima 
regionalization method. Using existing information of conductivity measure-
ments, structure parameters of the semivariogram (or variogram) were identi-
fied. Methods for variogram fitting are outside of the scope of this chapter.

Two sets of field measurements (Hydraulic head) are used for the parameter 
estimation problem.

Pilot points together with a regularization approach are applied to estimate 
the final conductivity distribution for Layer 1. Simple Prior knowledge is 
used to incorporate existing information of conductivity in the regularization 
techniques.

10.2 Field Measurements and Reference Data

Seven Observations Points are already defined in fepest1.fem. Together 
with four additional observation points to be included later in FePEST, they 
will be used for the calibration of K_xx. Further details of observation-point 
manipulation wild be discussed in this chapter.

Figure 10.1 shows a distribution of measured conductivity values. Here, a 
first overview gives an idea of the wide range of conductivity values in the 
model domain. A classical approach in this situation is to apply a log transfor-
mation to the distribution of K_xx. From the measurement distribution, a vari-
ogram structure can be estimated using geostatistical methods. In our case, 
the distribution of log(K_xx) is well represented by a spherical variogram with 
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nugget = 0, sill = 0.58, and range = 4200. This information will be imple-
mented in the FePEST problem.

Figure 10.1 Field measurements of conductivity in the Friedrichshagen FEFLOW 
model domain.

10.3 FEFLOW Model Preparation

If the parameter estimation considers only a specific zone of the FEFLOW 
model domain (e.g., a layer, slice, or arbitrary subdomain), some preliminary 
steps are needed in FEFLOW before initiating FePEST.

In this FePEST demo exercise, the conductivity is calibrated on layer 1 only; 
therefore, an element selection of this area is created first after opening fep-
est1.fem in FEFLOW 6.2:

 In the active view, go to Layer 1.
 In the Selection toolbar, indicate Elements as selection target.
 Click on Select All.
 In the  Entities panel, store the element selection and rename it as 

Zone1.

This element selection Zone1 will be available in FePEST as a Zone for the 
parameter estimation.

The Observation Points already included in the FEFLOW problem can be 
verified by opening the Observation Point Properties dialog (Figure 10.2).
78 FEFLOW - © DHI



FePEST Initial Configuration
Figure 10.2 Observation Point Properties dialog.

The same dialog is also used to assign measurement time series to observa-
tion points.

Click on OK to leave the dialog without any changes. In the Slice view, 
navigate through the different slices. Notice that Observation Points are sit-
uated on slices 1 and 4 of the FEFLOW model while the actual parameter 
estimation in this example will be limited to the first slice. Observation points 
to be included for the calibration problem can be still defined later in FePEST.

Save the FEFLOW file as fepest2.fem and then close FEFLOW.

10.4 FePEST Initial Configuration 

FePEST is the graphical user interface for PEST. Although FePEST provides 
full communication between FEFLOW 6.2 and PEST (main program and 
PEST utilities), the user has the option to manually update the PEST program 
files and thus to control which PEST version is used in FePEST. During the 
installation of FEFLOW 6.2, the PEST program files are automatically 
installed as well. Their location is controlled via the menu Tools > Options in 
FePEST (Figure 10.3).
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Figure 10.3 Location of main PEST files and PEST utilities.

10.5 Definition of a New FePEST Problem

Open FePEST and create a new problem from the menu File > New. A dialog 
prompts for the location of the FEFLOW fem file that will be used for the FeP-
EST optimization. Select the previously saved file

\tutorial\femdata\fepest2.fem.

Click on OK to create a new FePEST problem. FePEST now automati-
cally retrieves all important information from the FEFLOW model such as 
problem class (flow, mass, heat and/or age), material properties, observation 
points with their corresponding time series (if applicable), stored element 
selections, etc.
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Figure 10.4 Definition of new FePEST problem.

10.6 Optimization Settings

Next, the FePEST Problem Settings dialog will prompt for the information 
needed to define the PEST problem and to create the main PEST files:

 Optimization Control
 Parameters
 Observations
 Prior Knowledge
 Subspace Regularization
 Predictive Analysis
 Parallelization

Experienced PEST users will recognize the traditional code names of the 
PEST parameters shown in bold letters.

While for most groundwater models, the default values suggested by the 
PEST manual and indicated in the Problem Settings dialog should be 
appropriate, some modifications may be needed for highly-parameterized 
FEFLOW models.

In the Optimization Control section, the PEST operation mode is indicated. 
For the case of this exercise, PEST runs in Estimation operation mode. This 
is the default mode in FePEST.

In Optimization Control > Termination Criteria (Figure 10.5), the different 
criteria to terminate the PEST execution are listed. A maximum number of 
PEST iterations (NOPTMAX) of 30 is recommended. It is worthy to notice 
that a single PEST iteration includes several FEFLOW model runs. The total 
number of FEFLOW runs depends on the number of parameter to be cali-
brated and the selected kind of PEST statistics. The most-demanding PEST 
operation is the computation of the Jacobian Matrix.
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Other termination criteria are the relative reduction of the objective function 
(PHIREDSTP), the maximum number of consecutive iterations which failed to 
lower the objective function (NPHINORED), the maximum relative parameter 
change (RELPARSTP), and the maximum number of consecutive iterations 
with minimal parameter change (NRELPAR).

The value of NOPTMAX in FePEST also defines the type of action to under-
take in the current PEST run. In a classical PEST configuration (no FePEST 
interface), a value of NOPTMAX equal to 0 means that PEST runs only once 
to compute the measurement objective function. A value of -1 computes the 
Jacobian Matrix and statistics, and a value of -2 the Jacobian Matrix only. 
In FePEST these options are controlled via the combo box below NOPTMAX 
in the Termination Criteria section.

The type of optimization statistics (covariance matrix, correlation matrix and 
eigenvalues) for the final PEST run needs to be indicated in the Optimization 
Control > Optimization Statistics section.

Figure 10.5 Problem Settings dialog: Termination Criteria.

10.7 Parameter Definition

Parameters in a FePEST optimization problem can be defined either as 
homogeneous zones, or as spatially variable using pilot points. In both cases, 
material properties (so-called Parameter definitions) are specified for 
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Zones (or for the entire model domain). Typically, zones reflect different geo-
logical units with respective FEFLOW material properties.

Zones correspond to stored element sections in a FEFLOW fem file. After 
opening the file with FePEST, all existing element selections will be listed in 
the Zones section of the Parameter definition dialog.

In the Parameters section of the Problem Settings dialog, click on New 
to create a new parameter definition. The Parameter definition dialog 
(Figure 10.6) shows that the FEFLOW file contains an element selection 
named Slice_1.

In the Parameter definition dialog (Figure 10.6), select Slice_1 as Zone, 
choose K_xx as Parameter type and Pilot points in 2D, all layers adjust-
able as the assignment method.

Figure 10.6 Parameter definition dialog.

The assignment method via #IFM implemented# is for advanced users with 
experience in FEFLOW interface programming. A FEFLOW plug-in (previ-
ously attached and registered in FEFLOW 6.2) can be made responsible for 
transferring parameter values to FePEST. This is a powerful option to cali-
brate FEFLOW parameters not available via the FePEST graphical interface, 
e.g., boundary conditions.

After defining Pilot points in 2D, all layers adjustable as the assignment 
method, the Parameter definition dialog slightly changes. 
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Now the locations of pilot points need to be specified using a specific geo-
graphical position (X, Y, Z), slice or layer number as reference.

FePEST provides a very convenient automatic generator of pilot points. Click 
on Generate to open the Pilot point generation dialog (Figure 10.8) 
which will prompt for the number of points desired. For this exercise, enter a 
value of 60. Pilot points can be distributed in one of four automatic pat-
terns: uniform, stagger rows, stagger columns and random.

Choose the option uniform and close the dialog by clicking OK.

Figure 10.7 Parameter definition dialog in pilot point mode.

Notice that the actual number of pilot points will depend on the geometry of 
the FEFLOW model domain and pattern specified. Indeed, the final number 
of pilot points in our case is 61. If the automatic generation was not satisfac-
tory, pilot points can be edited and/or deleted in the Parameter definition 
dialog.

PEST will calibrate parameter values at each individual pilot point. Subse-
quently, PEST will interpolate (and/or extrapolates) parameter values over 
the entire Zone specified as pilot-point domain. Kriging or Radial basis 
functions are available as interpolation methods. 
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Figure 10.8 Pilot point generation dialog.

For this exercise, the Kriging interpolation method is used.

Click on  Interpolation method properties to assign properties of the 
experimental variogram. In the Kriging configuration dialog (Figure 10.9), 
four well-known variogram types are available (Spherical, Exponential, 
Gaussian and Power). In Geostatistics, these are called theoretical vario-
grams (or semivariograms) and they represent the spatial structure of a 
measured property, in particular, how field measurements are correlated 
depending on sampling distance. Notice that all the variogram properties 
(range, sill, nugget, etc.) have to be set up in FePEST and the uncertainty of 
these parameters will also be reflected in the parameter estimation.

 

Figure 10.9 Kriging configuration dialog.

After activating Show variogram and a click on Refresh, FePEST 
computes the experimental variogram (dots) and theoretical variogram (con-
tinuous line) in the chart. FePEST can also compute variograms for different 
lag tolerances. This feature gives a faster overview about the goodness-of-
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fit between experimental and theoretical variograms. Chart information can 
be exported by choosing the Properties option from the context menu.

For this exercise, use the values presented in Figure 10.9. Click on OK 
to confirm the changes in the Kriging configuration dialog.

Next, click on the Defaults tab in the Parameter definition dialog. Depend-
ing on the material property, a parameter log-transformation may improve the 
PEST optimization result. Parameters such as conductivity and transmissivity 
are typically log-transformed because they can change several orders of 
magnitude within a given model domain.

FePEST offers four possibilities to define a PEST parameter (none, log, 
fixed and tied):

 None: Parameter calibration is carried out without any transformation of 
the parameter.

 Log: A log-transformation is applied to the parameter before PEST is 
executed. PEST statistics are presented based on transformed parame-
ters.

 Fixed: The parameter is listed within the PEST control file, but is not 
modified during PEST optimization. Fixed parameters do not influence 
the objective function.

 Tied: The parameter is tied to a so-called “parent” parameter and its 
value will depend on the current value of the parent. Tied parameters will 
be updated during the PEST run with the same ratio as given by the ini-
tial parameter values.

In this exercise, Initial value is set as current, i.e., FePEST will automatically 
retrieve all parameter K_xx values from the FEFLOW fem file.

In a first PEST run, it is always recommended to provide wide bounds for the 
parameter to be estimated so that the PEST optimization will not be influ-
enced. Here, modify Upper Bound to a value of 500 m/d. In further PEST 
runs, parameter bounds can be adjusted based on parameter tendencies 
observed from previous runs.

Click on OK to close the dialog.

Since our FEFLOW model contains information in three dimensions, conduc-
tivity values for K_yy and K_zz are also available in the fem file. However, 
these two material properties in FEFLOW are related to values of K_xx, i.e. 
K_yy = K_xx and K_zz = Kxx / 10. Therefore, PEST and FePEST should 
also update the spatial distributions of K_yy and K_zz according to the modi-
fications of K_xx. This is accomplished by defining K_yy and K_zz as tied 
parameters, with the parent parameter K_xx.

Click on New to create a new parameter definition. Indicate conductivity 
K_yy as parameter type. In the Assignment method, choose Tied to other 
parameter definition. Indicate xco (Conductivity K_xx) in the field Tied to. 
86 FEFLOW - © DHI



Observations Definition
In the Defaults tab, modify Upper Bound to a value of 500 m/d. Click on 
OK to confirm the changes. FePEST automatically creates 61 pilot points 

to compute the distribution of K_yy based on the distribution of the parent 
parameter pilot points.

Repeat the steps for K_zz.

Click on Apply to assign all changes made in the Parameter section.

Figure 10.10 PEST parameters for parameter definition (tied parameters).

10.8 Observations Definition

In the Observations section of the Problem Settings dialog, all field meas-
urements (Hydraulic head, Mass concentration, Temperature, Ground-
water age, etc.) to be used in the PEST optimization problem are specified.

Create a new observation definition by clicking on the New button. In the 
Observation definition dialog, indicate Hydraulic head as Observation 
type. As Source method, select Reference values in the FEM 
(Figure 10.11). This option will automatically retrieve the information for all 
Observation Points (Figure 10.2) from the FEFLOW file. 

In the Defaults tab in the Observation definition dialog, indicate a Weight 
of 2.621 for this observation group. The weight value will reflect to which 
degree an observation group affects the measurement objective function. Dif-
ferent Weights can be used between observation groups to include different 
uncertainties of the measurements. As a rule of thumb, observation weights 
can be calculated as the inverse of the measurement standard deviation.
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Click on OK to add this observation group to the FePEST problem 
(Figure 10.11).

Since also the Observation Points located on Slice 4 were imported into 
FePEST, they need to be deactivated so that they do not influence the objec-
tive function. Double-click on the observation line corresponding to GWM2 
and change Weight to 0. Click on OK to confirm the modifications. 
Repeat these steps for GWM5, GWM8, GMW10, GMW11 and GMW12.

The second set of observation points is added directly using an external file. 
This group has a higher uncertainty (standard deviation of 0.35 m).

 Click on New to create a second observation definition. Define 
Hydraulic head as Observation type.

 Select External file as Source for importing observation points.
 In the file dialog, select the ASCII Table (*.dat) named new_observa-

tions.dat.
 In the Defaults tab, insert a Weight of 0.545 as shown in 

Figure 10.11.
 Click on OK to complete definition of this second observation group.

Figure 10.11 Observation definition dialog.

A FEFLOW triplet file can be easily prepared in a spreadsheet or text editor. 
This file type has a very simple structure and can accommodate geographical 
coordinates and observation values, as shown in Figure 10.12. Further 
details can be found in the FEFLOW Help System.
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Figure 10.12 Structure of a FEFLOW triplet file used to import observations.

Information for all the observations considered in the FePEST optimization 
problem is given in the lower part of the Observation section in the Problem 
Settings dialog (Figure 10.13), including observation type, name, coordi-
nates, value, weights, etc. Any time series associated with FEFLOW Obser-
vation Points would also be listed here.

Observation items can be edited directly within FePEST. Additionally, FeP-
EST provides the possibility to edit all or some of the observations in an 
external spreadsheet. Clicking Copy will generate a copy of the entire 
observation list (this also applies for the parameter list).

 

Figure 10.13 Final list of observations used for PEST optimization.
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10.9 Parallelization Mode

FePEST allows a PEST run in parallel mode. FePEST uses BeoPEST (third-
part software) as tool for the communication between slaves and master.

In the Parallelization section of the Problem Settings dialog, click on 
New to create a Slave definition. In the Slave definition dialog, the 

server to be used is specified under Host name. In this exercise, localhost is 
used for sake of simplicity. This means that multiple FEFLOW executions will 
simultaneously run on different cores of the same computer. As No. of 
slaves, insert a value of 3. Make sure Active is selected 
(Figure 10.14).

Figure 10.14 Definition of slaves for a PEST run in parallel mode.

Click OK to close the Slave definition dialog. Click Apply to confirm 
the changes in the Parallelization section.

Similarly, slave definitions can be created if multiple slave servers are availa-
ble. The status (Active or Inactive) of a slave definition can be modified any 
time before the PEST problem is initiated.

For reference, all the FePEST runs in this exercise were computed using an 
Intel(R) Core™ i7 – 3840 QM CPU with 2.80 GHz and 16.0 GB RAM. 
Depending on the available hardware, FePEST run times may vary.

10.10 Estimation Method and Regularization Setup

FePEST graphical interface provides all the combination of regularization 
supported by PEST such as:

 Regularization methods
 Tikhonov Regularization
 Singular Value Decomposition (SVD)
 SVD-Assist
 Least Squares Regularization (LSQR)

By default, FePEST uses Singular Value Decomposition. This is a very 
powerful option for FEFLOW models, as discussed in the theoretical part of 
this chapter. For this exercise, scenarios are implemented with and without 
Tikhonov regularization in order to explore the importance of the prior knowl-
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edge in the calibration process. SVD-Assist is used in this tutorial to cut off 
the number of dimensions of the problem, i.e. a rapid calibration.

10.10.1 Regularization Setup

In the Problem Settings dialog, go to the section Regularization and acti-
vate Tikhonov. In the same page include SVD-Assist 
(Figure 10.15). 

Figure 10.15 Regularization settings in FePEST.

In the section of Tikhonov, activate the three different options of prior informa-
tion as shown in Figure 10.16.

Figure 10.16 Tikhonov regularization settings: Prior information.

In the Objective function settings of Tikhonov, specify values of 0.25, 
0.5 and 0.1 for the PEST parameters PHIMLIM, PHIMACCEPT, and FRAC-
PHIM, respectively.

Click on Apply to confirm the modifications.
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10.10.2 Settings of SVD-Assist

In the Problem Settings dialog, go to the section Regularization > SVD-
Assist, the option Automatically set using SUPCALC is selected by 
default as the option to determine the number of super parameters. Click on 

Apply and OK to confirm the changes.

Save the changes to fepest.fps.

10.11 Running PEST

In the active view FePEST shows pilot points, observation points and param-
eter zones (Figure 10.17), as indicated in the Problem Settings dialog.

Navigation through different slices and layers of the FEFLOW domain is pos-
sible via the Map Contents panel (if not visible, this is found in menu 
View > Map Contents). 

Figure 10.17 FEFLOW model with assigned pilot and observation points for FePEST 
project.

Before initiating a PEST run, all configuration files need to be created. Click 
on Checks to generate the three main PEST files (Control file, Template 
file and Instruction file) and batch files for FEFLOW and PEST. At the same 
time, the PEST check tools PESTCHEK, TEMPCHEK, and INSCHEK are 
executed. A dialog in FePEST will show any errors and/or warnings found.

If errors are found, modifications can be made via the Problem Settings dia-
log. As a general recommendation, the= Checks tools should always be 
run after any modification to the FePEST project.

PEST is initiated with a click on Run. FePEST still provides the possibility 
to re-create PEST files if modifications have been made in the Problem Set-
tings dialog. If a FePEST project involves the use of pilot points, this option 
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should be marked as the pilot-point files PLPROC are not automatically cre-
ated by the Checks tool.

In the Run dialog, activate Create the files required by PEST and click 
OK to initiate the PEST optimization.

The Output panel appears after the PEST initialization. In the case of run-
ning PEST in parallel mode, additional Output panels will appear on the 
master display for each slave. The information presented in the Output 
panels is identical to that appearing on the console in a classic command-line 
PEST execution.

 In a similar manner the rest of FePEST projects can be executed.

10.12 Postprocessing PEST Results

10.12.1 Optimization Results in FePEST

Immediately after the first FEFLOW model execution, FePEST provides 
graphical feedback of the optimization problem and the status of the objective 
function (Figure 10.18). In the Simulated vs. Observed panel, the current 
misfit between FEFLOW results and observations is shown. 

Figure 10.18 Status panel in FePEST with current PEST iteration information.

After the PEST optimization process has finished, results are available auto-
matically or they can be retrieved via the Estimation > Show results menu.
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Figure 10.19 Estimation results and different export options.

In the Estimation results dialog, the final estimated value of K_xx for each 
pilot point is shown. From here, several options are available:

 Click Save to save the results in a FEFLOW fem file with final 
parameter estimates (automatic assignment of material properties in 
FEFLOW).

 Click Save and select Use the new FEM to connect a new 
FEFLOW fem file (with new material properties) to the current FePEST 
project.

 Click Apply to create a new FePEST project based on the final 
parameter estimates.

Use the first option to review PEST results directly in FEFLOW. Save the new 
file as fepest3.fem. We will leave the post-processing in FEFLOW for the 
next steps.

In FePEST you can visualize the Simulated vs. Observed panel 
(Figure 10.20) to verify the graphically the mismatch between model and his-
torical data. Exact numbers can be visualized faster using the Tooltip option 
(activated via right-click into the chart), and placing the mouse cursor over a 
data point in the chart.
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Figure 10.20 Simulated versus observed values in FePEST.

The final misfit can be reviewed in the Residuals panel (Figure 10.21), 
which also contains information on the weighted residuals.

Figure 10.21 Residuals panels shows the final misfit between FEFLOW simulated 
values and measured values.

10.12.2 Results Postprocessing in FEFLOW

Open the file fepest3.fem in FEFLOW. Make sure that Layer 1 is selected in 
the Spatial Units panel. Double-click on K_xx under Material Properties 
> Fluid flow > Conductivity in the Data panel to plot this parameter in 
the Slice view.

In the Maps panel, right-click on ASCII Table Files and choose Add 
Map(s) to folder ASCII Table Files. Select new_observation_wells.dat to 
include a file with new observation points (second group in FePEST).
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Right-click on this new entry and choose the option Convert to > Obser-
vation Points. Click OK to accept the defaults settings.

 Double-click on Observation Points in the    Spatial Units panel to plot 
them in the active view.

The distribution of K_xx estimated by PEST is shown in Figure 10.22. Obser-
vation points NEW1-NEW4 strongly influence the conductivity values.

The distribution of conductivity K_xx using Tikhonov, Singular Value 
Decomposition and SVD-Assist is shown in Figure 10.22. Note that the 
estimated distribution is significantly smoother due to the regularization tech-
niques. In this exercise, the observation points NEW1-NEW4 contain a signif-
icant measurement noise. From a first inspection to the conductivity field, it 
seems to be that these do no influence significantly the regularized calibra-
tion. The reason of this behaviour falls into the distribution of the observation 
weights in the FePEST problem. The observation weights have been 
assigned in such a manner that all the observation groups contribute equally 
to the measurement objective function, i.e. observations NEW1-NEW4 must 
have a lower weight than others. Moreover, the objective function limits for 
the Tikhonov regularization has been significantly increased compared to the 
default values in PEST / FePEST. This information instructs PEST to avoid 
the over-fitting.

Areas of high conductivity (shown in red in Figure 10.22) are even far from 
reaching the bounds of the parameter definition in FePEST.

Figure 10.22 Distribution of conductivity K_xx estimated including regularization 
methods in FePEST.
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The initial distribution of conductivity K_xx has been previously stored as a 
User Data > initial_conductivity in the Data panel. Double-click on ini-
tial_conductivity to plot its distribution in the Slice view. By default, User 
Data are plotted using a linear colour mapping. Double-click on initial_con-
ductivity in the View Components panel to open the Properties 
panel. Here, change to the Logarithmic option and click Apply to con-
firm. The distribution of the original (initial) conductivity K_xx is shown in 
Figure 10.23.

Figure 10.23 Distribution of initial conductivity K_xx interpolated by an Akima region-
alization technique.

The initial distribution of conductivity K_xx looks somewhat “bumpy” due to 
the Akima regionalization applied.

To compute the relative parameter deviation, the initial distribution ini-
tial_conductivity is used as reference. In the Data panel, right-click on 
User Data to open the context menu and select Add Elemental Expres-
sion. Rename this elemental expression to Parameter-Deviation. Right-click 
on Parameter-Deviation to open its context menu and select Edit 
Parameter Expression. In the Expression Editor, write the same expres-
sion as shown in Figure 10.24.
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Figure 10.24 Use of the Expression Editor in FEFLOW to compute the parameter 
deviation in respect to the initials.

Click OK to confirm the changes, leave the dialog and plot the element 
expression in the active view by double-clicking on Parameter-Deviation 
(Figure 10.24). We can identify the areas, where the maximum changes 
occurred during the calibration by plotting the distribution with the option 
Fringes in the the View Components panel. Open the Properties 
panel of Fringes and select Arbitrary option. Click Edit to provide the 
list as shown in Figure 10.25. Finally Click Apply. 

Figure 10.25 Fringes of parameter deviation.

The distribution of the parameter deviation shows that the regularized calibra-
tion has indeed modified the conductivity distribution in the model. The areas 
near the new four observation wells have suffered the maximum changes.
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Figure 10.26 Distribution of the parameter deviation between calibrated set and initial 
set.

Save the changes in FEFLOW 6.2 to fepest4.fem and close FEFLOW.

10.12.3 Sensitivity Estimation

In the previous steps we have learnt that some observation points influenced 
the regularized calibration more than others. Now in FePEST we will intend to 
calculate the sensitivity distribution

Go back to FePEST and go to the menu Estimation - Utilities - Sensitivity. 
The sensitivity distribution will be computed using the JROW2VEC PEST util-
ity. FePEST extracts information from the Jacobian Matrix to compute the 
sensitivity distribution. In the Sensitivities dialog and check Select / 
deselect all to consider all the observations. Click Recalculate to initiate 
the calculation. Check and open the FEM in order to save the distribu-
tions in FEFLOW. You can save this file as fepest5.fem. Click Close to 
leave the Sensitivities dialog.

Open FEFLOW and load fepest5.fem to visualize the sensitivities in the 
model domain. 

Alternatively, the sensitivities table can be copy to any text editor or spread-
sheet editor for further post-processing. If that is the case, file can be anyway 
imported as usual in FEFLOW with the following steps:

 Click Add Nodal Distribution under User Data in the Data panel 
and rename the new entry to Sensitivity.
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  In the Maps panel, right-click on ASCII Table Files and select 
Add Map(s) to Folder ASCII Table Files. Choose the file 

pilot_point_sensitivities.dat. Right-click on this new file and select 
Link to Parameter(s). In the Parameter Association dialog, create 

a link between HEA-9 and User Data > Sensitivity. Keep the default 
settings (Regionalization method Inverse distance, Neighbors 4 and 
Exponent 2). Click on OK to confirm the changes. 

 Activate the link with a double-click on HEA-9 -> sensitivity in the 
Data panel. Select Slice 1 in the Spatial Units panel and select 

all nodes with a click on Select All. Reduce the Snap distance to 
0 m in the Snap-Distance toolbar and click on Assign.

The sensitivity distribution for observation HEA-9, corresponding to observa-
tion point named GWM9, is plotted in Figure 10.27. The distribution of sensi-
tivity from the Jacobian Matrix reveals that K_xx values from pilot points 
placed on the southern border (around observation points GWM13, GWM6 
and GWM4) highly influence the values for the observation point HEA-9. 

The negative sensitivity values reflect the tendency of a decreasing Hydrau-
lic head in HEA-9 with increasing K_xx at these pilot points.

Save the changes to the FEFLOW file fepest5.fem.

Figure 10.27 Distribution of sensitivity for observation point GWM9.

10.12.4 Additional Exercises

Run the same FePEST problem under these two cases. Use as a starting 
point the file fepest.fps.
100 FEFLOW - © DHI



Postprocessing PEST Results
 Case 1: Decrease significantly the value of the objective function limits 
for the Tikhonov regularization.

 Case 2: Deactivate the Tikhonov option in the regularization.

In the first case, you will notice the problem of over-fitting. There will be a per-
fect match between the observations and the FEFLOW results, but the con-
ductivity calibrated is far from being realistic (i.e. according to the imposed 
prior knowledge).

In the second case, there is no prior information supported in the calibration. 
PEST will find a solution, which perfectly fits the observations, however this is 
again not realistic. Here you end up with the problem of non-uniqueness in 
the system, i.e. several solutions provide the same answer.
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